Matrix Metalloproteinase-8 and -9 Are Increased at the Site of Abdominal Aortic Aneurysm Rupture

Author:

Wilson W. Richard W.1,Anderton Marcus1,Schwalbe Edward C.1,Jones J. Louise1,Furness Peter N.1,Bell Peter R.F.1,Thompson Matthew M.1

Affiliation:

1. From the Departments of Surgery (W.R.W.W., M.A., E.C.S., P.R.F.B.) and Pathology (J.L.J., P.N.F.), University of Leicester, Leicester, UK, and Department of Vascular Surgery (M.M.T.), St George’s Hospital Medical School, London, UK.

Abstract

Background— Abdominal aortic aneurysm (AAA) expansion is characterized by extracellular matrix degradation and widespread inflammation. In contrast, the processes that characterize AAA rupture are not well understood. The aim of this study was to investigate the proteolytic and cellular activity of ruptured AAA, focusing on matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Methods and Results— Anterior aneurysm wall biopsies were taken from 55 nonruptured and 21 ruptured AAAs. A further biopsy from the site of rupture was taken from 12 of the ruptured AAAs. MMP-1, -2, -3, -8, -9, and -13, as well as TIMP-1 and -2, were quantified in each biopsy with ELISA. A comparison of anterior aneurysm biopsies showed no difference in MMP or TIMP concentrations between nonruptured and ruptured AAA. In a comparison of ruptured AAA biopsies, MMP-8 and -9 levels were significantly elevated in the 12 rupture site biopsies compared with their 12 paired anterior wall biopsies, whereas other MMPs and TIMPs showed no difference (MMP-8, P <0.001; MMP-9, P =0.01). MMP-8 and -9 expression was mediated by native mesenchymal cells and was independent of the inflammatory infiltrate. Conclusions— A localized increase in MMP-8 and –9, mediated by native mesenchymal cells, presents a potential pathway for collagen breakdown and AAA rupture.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3