Right Ventricular Sarcomere Contractile Depression and the Role of Thick Filament Activation in Human Heart Failure With Pulmonary Hypertension

Author:

Jani Vivek12ORCID,Aslam M. Imran3ORCID,Fenwick Axel J.2ORCID,Ma Weikang4ORCID,Gong Henry4,Milburn Gregory5ORCID,Nissen Devin4,Cubero Salazar Ilton M.2,Hanselman Olivia1ORCID,Mukherjee Monica2ORCID,Halushka Marc K.6ORCID,Margulies Kenneth B.7ORCID,Campbell Kenneth S.5ORCID,Irving Thomas C.4ORCID,Kass David A.12ORCID,Hsu Steven2ORCID

Affiliation:

1. Department of Biomedical Engineering (V.J., O.H., D.A.K.), Johns Hopkins School of Medicine, Baltimore, MD.

2. Division of Cardiology, Department of Medicine (V.J., A.J.F., I.M.C.S., M.M., D.A.K., S.H.), Johns Hopkins School of Medicine, Baltimore, MD.

3. Division of Cardiology, Department of Medicine, University of Texas San Antonio School of Medicine (M.I.A.).

4. Biophysics Collaborative Access Team (BioCAT), Department of Biology, Illinois Institute of Technology, Chicago (W.M., H.G., D.N., T.C.I.).

5. Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington (G.M., K.S.C.).

6. Division of Cardiovascular Pathology, Department of Pathology (M.K.H.), Johns Hopkins School of Medicine, Baltimore, MD.

7. Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.).

Abstract

Background: Right ventricular (RV) contractile dysfunction commonly occurs and worsens outcomes in patients with heart failure with reduced ejection fraction and pulmonary hypertension (HFrEF-PH). However, such dysfunction often goes undetected by standard clinical RV indices, raising concerns that they may not reflect aspects of underlying myocyte dysfunction. We thus sought to characterize RV myocyte contractile depression in HFrEF-PH, identify those components reflected by clinical RV indices, and uncover underlying biophysical mechanisms. Methods: Resting, calcium-, and load-dependent mechanics were prospectively studied in permeabilized RV cardiomyocytes isolated from explanted hearts from 23 patients with HFrEF-PH undergoing cardiac transplantation and 9 organ donor controls. Results: Unsupervised machine learning using myocyte mechanical data with the highest variance yielded 2 HFrEF-PH subgroups that in turn mapped to patients with decompensated or compensated clinical RV function. This correspondence was driven by reduced calcium-activated isometric tension in decompensated clinical RV function, whereas surprisingly, many other major myocyte contractile measures including peak power and myocyte active stiffness were similarly depressed in both groups. Similar results were obtained when subgroups were first defined by clinical indices, and then myocyte mechanical properties in each group compared. To test the role of thick filament defects, myofibrillar structure was assessed by x-ray diffraction of muscle fibers. This revealed more myosin heads associated with the thick filament backbone in decompensated clinical RV function, but not compensated clinical RV function, as compared with controls. This corresponded to reduced myosin ATP turnover in decompensated clinical RV function myocytes, indicating less myosin in a crossbridge-ready disordered-relaxed (DRX) state. Altering DRX proportion (%DRX) affected peak calcium-activated tension in the patient groups differently, depending on their basal %DRX, highlighting potential roles for precision-guided therapeutics. Last, increasing myocyte preload (sarcomere length) increased %DRX 1.5-fold in controls but only 1.2-fold in both HFrEF-PH groups, revealing a novel mechanism for reduced myocyte active stiffness and by extension Frank-Starling reserve in human heart failure. Conclusions: Although there are many RV myocyte contractile deficits in HFrEF-PH, commonly used clinical indices only detect reduced isometric calcium-stimulated force, which is related to deficits in basal and recruitable %DRX myosin. Our results support use of therapies to increase %DRX and enhance length-dependent recruitment of DRX myosin heads in such patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3