Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue

Author:

Ruan Jia-Ling1,Tulloch Nathaniel L.1,Razumova Maria V.1,Saiget Mark1,Muskheli Veronica1,Pabon Lil1,Reinecke Hans1,Regnier Michael1,Murry Charles E.1

Affiliation:

1. From Department of Bioengineering (J.-L.R, M.V.R., M.R., C.E.M.), Program in Molecular and Cellular Biology (N.L.T.), Department of Pathology (N.L.T., M.R., V.M., L.P., H.R., C.E.M.), and Department of Medicine/Cardiology (C.E.M.), Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle.

Abstract

Background: Tissue engineering enables the generation of functional human cardiac tissue with cells derived in vitro in combination with biocompatible materials. Human-induced pluripotent stem cell-derived cardiomyocytes provide a cell source for cardiac tissue engineering; however, their immaturity limits their potential applications. Here we sought to study the effect of mechanical conditioning and electric pacing on the maturation of human-induced pluripotent stem cell-derived cardiac tissues. Methods: Cardiomyocytes derived from human-induced pluripotent stem cells were used to generate collagen-based bioengineered human cardiac tissue. Engineered tissue constructs were subjected to different mechanical stress and electric pacing conditions. Results: The engineered human myocardium exhibits Frank-Starling–type force-length relationships. After 2 weeks of static stress conditioning, the engineered myocardium demonstrated increases in contractility (0.63±0.10 mN/mm 2 vs 0.055±0.009 mN/mm 2 for no stress), tensile stiffness, construct alignment, and cell size. Stress conditioning also increased SERCA2 (Sarco/Endoplasmic Reticulum Calcium ATPase 2) expression, which correlated with a less negative force-frequency relationship. When electric pacing was combined with static stress conditioning, the tissues showed an additional increase in force production (1.34±0.19 mN/mm 2 ), with no change in construct alignment or cell size, suggesting maturation of excitation-contraction coupling. Supporting this notion, we found expression of RYR2 (Ryanodine Receptor 2) and SERCA2 further increased by combined static stress and electric stimulation. Conclusions: These studies demonstrate that electric pacing and mechanical stimulation promote maturation of the structural, mechanical, and force generation properties of human-induced pluripotent stem cell-derived cardiac tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 352 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3