N‐Terminal Pro Brain, N‐Terminal Pro Atrial Natriuretic Peptides, and Dynamic Cerebral Autoregulation

Author:

Mahinrad Simin1,Sabayan Behnam1ORCID,Garner Chaney R.1,Lloyd‐Jones Donald M.2,Sorond Farzaneh A.1

Affiliation:

1. Department of Neurology Northwestern University Feinberg School of Medicine Chicago IL

2. Department of Preventive Medicine Northwestern University Feinberg School of Medicine Chicago IL

Abstract

Background Elevated natriuretic peptides (NP) are associated with adverse cerebrovascular conditions including stroke, cerebral small vessel disease, and dementia. However, the mechanisms underlying these associations remain unclear. In this study, we examined the relationship of NT‐proBNP (N‐terminal pro brain NP) and NT‐proANP (N‐terminal pro atrial NP) with cerebrovascular function, measured by cerebral autoregulation. Methods and Results We included 154 participants (mean age 56±4 years old) from the CARDIA (Coronary Artery Risk Development in Young Adults) cohort. NT‐proBNP and NT‐proANP were measured in blood samples from the year 25 examination using electrochemiluminescence Immunoassay and enzyme‐linked immunoassay, respectively. Dynamic cerebral autoregulation (dCA) was assessed at the year 30 examination by transcranial Doppler ultrasound, using transfer function analysis (phase and gain) of spontaneous blood pressure and flow velocity oscillations, where lower phase and higher gain reflect less efficient cerebral autoregulation. We used multivariable linear regression models adjusted for demographics, vascular risk factors, and history of kidney and cardiac diseases. Higher NT‐proBNP levels at year 25 were associated with lower phase (β [95% CI]=−5.30 lower degrees of phase [−10.05 to −0.54]) and higher gain (β [95% CI]=0.06 higher cm/s per mm Hg of gain [0.004–0.12]) at year 30. Similarly, higher NT‐proANP levels were associated with lower phase (β [95% CI]=−9.08 lower degrees of phase [−16.46 to −1.70]). Conclusions Higher circulating levels of NT‐proBNP and NT‐proANP are associated with less efficient dCA 5 years later. These findings link circulating NP to cerebral autoregulation and may be one mechanism tying NP to adverse cerebrovascular outcomes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3