Yellow Wine Polyphenolic Compound Protects Against Doxorubicin-Induced Cardiotoxicity by Modulating the Composition and Metabolic Function of the Gut Microbiota

Author:

Lin Hui1ORCID,Meng Liping1,Sun Zhenzhu2,Sun Shiming3,Huang Xingxiao4,Lin Na5,Zhang Jie1,Lu Wenqiang4,Yang Qi5,Chi Jufang1,Guo Hangyuan6ORCID

Affiliation:

1. Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, China (H.L., L.M., J.Z., J.C.).

2. Department of Cardiology, Taizhou Hospital of Zhejiang Provence, China (Z.S.).

3. The First Clinical Medical College, Wenzhou Medical University, Zhejiang, China (S.S.).

4. Zhejiang University School of Medicine, Hangzhou, China (X.H., W.L.).

5. Zhejiang Chinese Medical University, Hangzhou, China (N.L., Q.Y.).

6. College of Medicine, Shaoxing University, Zhejiang, China (H.G.).

Abstract

Background: Dietary polyphenols help to prevent cardiovascular diseases, and interactions between polyphenols and gut microbiota are known to exist. In this study, we speculated that gut microbiota-mediated metabolite regulation might contribute to the anticardiotoxic effects of yellow wine polyphenolic compound (YWPC) in doxorubicin (DOX)-treated rats. Methods: 16S-rDNA sequencing was performed to analyze the effects of YWPC on the gut microbiota in DOX-treated rats (n=6). Antibiotics were used to investigate the contribution of the altered microbiome to the role of YWPC (n=6). Plasma metabolomics were also analyzed by untargeted gas chromatography-mass spectrometry systems. Results: YWPC ameliorated DOX-mediated cardiotoxicity, as evidenced by increased cardiac and mitochondrial function and reduced levels of inflammation and myocardial apoptosis ( P <0.05 for all). The low abundance of EscherichiaShigella , Dubosiella , and Allobaculum , along with enrichment of Muribaculaceae_unclassified , Ralstonia , and Rikenellaceae_RC9_gut_group in the gut, suggested that YWPC ameliorated DOX-induced microbial dysbiosis. YWPC also influenced the levels of metabolites altered by DOX, resulting in lower arachidonic acid and linoleic acid metabolism and higher tryptophan metabolite levels ( P <0.05 for all). Correlational studies indicated that YWPC alleviated DOX-induced inflammation and mitochondrial dysfunction by modulating the gut microbial community and its associated metabolites. Antibiotic treatment exacerbated cardiotoxicity in DOX-treated rats, and its effect on the gut microbiota partly abolished the anticardiotoxic effects of YWPC, suggesting that the microbiota is required for the cardioprotective role of YWPC. Conclusions: YWPC protected against DOX-induced cardiotoxicity in a gut microbiota–dependent manner. This supports the use of dietary polyphenols as a therapeutic approach for the treatment of cardiovascular diseases via microbiota regulation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3