Hepatoprotective effects of magnolol in fatty liver hemorrhagic syndrome hens through shaping gut microbiota and tryptophan metabolic profile

Author:

Lv Yujie,Ge Chaoyue,Wu Lianchi,Hu Zhaoying,Luo Xinyu,Huang Weichen,Zhan Shenao,Shen Xinyu,Yu Dongyou,Liu Bing

Abstract

Abstract Background Magnolol (MAG) exhibits hepatoprotective activity, however, whether and how MAG regulates the gut microbiota to alleviate fatty liver hemorrhagic syndrome (FLHS) remains unclear. Therefore, we investigated the mechanism of MAG in FLHS laying hens with an emphasis on alterations in the gut–liver axis. We randomly divided 540 56-week-old Hy-line white laying hens with FLSH into 4 groups. The birds were fed a high-fat low-protein (HFLP) diet (CON) or HELP diets supplemented with 200, 400, and 600 mg/kg of MAG (M1, M2, and M3, respectively) for 9 weeks. Results Magnolol supplementation increased the laying rate and ameliorated hepatic damage and dysfunction by regulating lipid metabolism, improving intestinal barrier function, and shaping the gut microbiota and tryptophan metabolic profiles. Dietary MAG supplementation downregulated the expression of lipid synthesis genes and upregulated the expression of lipid transport genes at varying degrees. The intestinal barrier function was improved by 200 and 400 mg/kg of MAG supplementation, as evidenced by the increased villus height and mRNA expression of tight junction related genes. Microbiological profile information revealed that MAG changed the gut microbiota, especially by elevating the abundances of Lactobacillus, Faecalibacterium, and Butyricicoccus. Moreover, non-targeted metabolomic analysis showed that MAG significantly promoted tryptophan metabolites, which was positively correlated with the MAG-enriched gut microbiota. The increased tryptophan metabolites could activate aryl hydrocarbon receptor (AhR) and relieved hepatic inflammation and immune response evidenced by the downregulated the gene expression levels of pro-inflammatory cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the liver. The fecal microbiota transplantation (FMT) experiments further confirmed that the hepatoprotective effect is likely mediated by MAG-altered gut microbiota and their metabolites. Conclusions Magnolol can be an outstanding supplement for the prevention and mitigation of FLHS in laying hens by positively regulating lipid synthesis and transport metabolism, improving the intestinal barrier function, and relieving hepatic inflammation by reshaping the gut microbiota and metabolite profiles through gut microbiota-indole metabolite-hepatic AhR crosstalk. These findings elucidate the mechanisms by which MAG alleviates FLHS and provide a promising method for preventing liver diseases by modulating gut microbiota and their metabolites.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3