Intrinsic Tone as Potential Vascular Reserve in Conductance and Resistance Vessels

Author:

Jain Mukesh1,Dai Hai Bin1,Carrozza Joseph P.1,Sellke Frank W.1,Morgan Kathleen G.1

Affiliation:

1. the Cardiovascular Division, Department of Medicine (M.J., J.P.C., K.G.M.), and the Department of Cardiothoracic Surgery (H.B.D., F.W.S.), Beth Israel Hospital, and the Program in Smooth Muscle Research (M.J., K.G.M.), Harvard Medical School; and Boston Biomedical Research Institute (K.G.M.), Boston, Mass.

Abstract

Background The purpose of this study was to define the degree of intrinsic tone in conductance and resistance vessels, to define the calcium dependency of intrinsic tone in these vascular preparations, and to investigate the efficacy of vasodilatory agents on the level of intrinsic tone in these vascular preparations. Methods and Results All vessels were deendothelialized. Isometric force was recorded from strips of ferret aorta, ferret pulmonary artery, and human coronary artery. Vessel diameter was recorded from the ferret epicardial coronary artery and from ferret coronary microvessel in a pressurized no-flow state. Intrinsic tone was defined as the active increase in force or decrease in diameter with warming from 6°C to 37°C. Changes in force or diameter with various pharmacological agents were expressed as a percentage of intrinsic tone. Our results indicate that intrinsic tone accounts for ≈35% to 40% of total tone in all vascular preparations studied and is not dependent on extracellular calcium. Agents that increased cAMP levels (eg, forskolin, milrinone) and agents that decreased protein kinase C activity (eg, staurosporine) were partially effective in decreasing intrinsic tone. Nitroprusside, adenosine, hydralazine, and nifedipine had no significant effect. Conclusions Our results indicate that intrinsic tone represents a significant component of vascular tone that has not been previously recognized and remains largely unexploited by current pharmacological therapies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3