Human Activin-A Is Expressed in the Atherosclerotic Lesion and Promotes the Contractile Phenotype of Smooth Muscle Cells

Author:

Engelse Marten A.1,Neele Jolanda M.1,van Achterberg Tanja A. E.1,van Aken Benien E.1,van Schaik Ron H. N.1,Pannekoek Hans1,de Vries Carlie J. M.1

Affiliation:

1. From the Academic Medical Center (M.A.E., J.M.N., T.A.E.v.A., B.E.v.A., H.P., C.J.M.d.V.), University of Amsterdam, Department of Biochemistry, Amsterdam and Erasmus University (R.H.N.v.S.), Department of Endocrinology and Reproduction, Rotterdam, The Netherlands.

Abstract

Abstract —Activin is a member of the transforming growth factor-β superfamily, and it modulates the proliferation and differentiation of various target cells. In this study, we investigated the role of activin in the initiation and progression of human atherosclerosis. The expression of activin, its physiological inhibitor follistatin, and activin receptors were assayed in human vascular tissue specimens that represented various stages of atherogenesis. In situ hybridization experiments revealed activin mRNA in endothelial cells and macrophages and a strong induction of activin expression in neointimal smooth muscle cells from the early onset of atherogenesis. We developed an “in situ free-activin binding assay” by using biotinylated follistatin, which allowed us to detect bioactive activin at specific sites in atherosclerotic lesions. The mRNAs encoding the activin receptors are expressed similarly in normal and atherosclerotic tissue, which indicates that activin-A signaling in atherogenesis is most likely dependent on changes in growth factor concentrations rather than on receptor levels. In vitro, activin induces the contractile, nonproliferative phenotype in cultured smooth muscle cells, as is reflected by increased expression of smooth muscle-specific markers (SMα-actin and SM22α). Our data provide evidence that activin induces redifferentiation of neointimal smooth muscle cells, and we hypothesize that activin is involved in plaque stabilization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3