Affiliation:
1. School of Engineering and Materials Science Queen Mary University of London London E1 4NS UK
2. Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1QA UK
3. Department of Translational Medicine Laboratory for Technologies of Advanced Therapies (LTTA) University of Ferrara Ferrara 44121 Italy
4. Y.ai New York 10037 USA
5. William Harvey Research Institute Queen Mary University of London London EC1M 6BQ UK
6. School of Cardiovascular Medicine and Sciences King's College London London SE5 9NU UK
Abstract
AbstractArterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.
Funder
British Heart Foundation
Engineering and Physical Sciences Research Council
Biotechnology and Biological Sciences Research Council
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献