Tie2 Receptor Expression Is Stimulated by Hypoxia and Proinflammatory Cytokines in Human Endothelial Cells

Author:

Willam Carsten1,Koehne Petra1,Jürgensen Jan Steffen1,Gräfe Michael1,Wagner Kay Dietrich1,Bachmann Sebastian1,Frei Ulrich1,Eckardt Kai-Uwe1

Affiliation:

1. From the Departments of Nephrology and Medical Intensive Care (C.W., J.S.J., U.F., K.-U.E.), Neonatology (P.K.), Physiology (K.D.W.), and Anatomy (S.B.), Charité, Humboldt University Berlin, and Department of Cardiology (M.G.), German Heart Center, Berlin, Germany.

Abstract

Abstract —The tyrosine kinase receptor Tie2 (also known as Tek) plays an important role in the development of the embryonic vasculature and persists in adult endothelial cells (ECs). Tie2 was shown to be upregulated in tumors and skin wounds, and its ligands angiopoietin-1 and -2, although they are not directly mitogenic, modulate neovascularization. To gain further insight into the regulation of Tie2, we have studied the effect of hypoxia and inflammatory cytokines, two conditions frequently associated with neoangiogenic processes, on Tie2 expression in human ECs. Exposure to 1% O 2 led to a time-dependent significant rise of Tie2 protein levels in human coronary microvascular endothelial cells (HCMECs) and dermal microvascular ECs (HMEC-1) (3.2- and 2.5-fold within 24 hours), which was reversible after reoxygenation, and induced a less marked increase in human umbilical vein ECs (HUVECs; 1.7-fold). Hypoxia-conditioned medium and d -deoxyglucose did not change Tie2 expression, but desferrioxamine and cobalt, which are known to mimic hypoxia-sensing mechanisms, induced Tie2 at ambient oxygen tensions. Tumor necrosis factor-α induced Tie2 in a time- and dose-dependent fashion in all 3 EC types (HUVEC, 2.3-fold; HMEC-1, 2.8-fold; and HCMEC, 3.0-fold; 10 ng/mL, 24 hours). Enhanced expression was also found after exposure to interleukin-1β (1 ng/mL). Changes in Tie2 protein levels were paralleled by changes in mRNA expression. In accordance with these in vitro findings, immunohistochemistry revealed focal upregulation of Tie2 in capillaries at the border of infarcted human and rat myocardium. In conclusion, the data show that hypoxia and inflammatory cytokines upregulate Tie2, which may contribute to the angiogenic response in ischemic tissues.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3