Cardiac programming in the placentally restricted sheep fetus in early gestation

Author:

Zhang Song1,Lock Mitchell C.1ORCID,Tie Michelle1,McMillen I. Caroline1ORCID,Botting Kimberley J.1,Morrison Janna L.1ORCID

Affiliation:

1. Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Science University of South Australia Adelaide SA Australia

Abstract

AbstractFetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days’ gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. imageKey points Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin‐like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3