Affiliation:
1. From the Department of Biomedical Sciences, Division of Biochemistry, Laboratory of Cardiovascular Research, University of Sassari, Sassari, Italy, and National Laboratory of the National Institute of Biostructures and Biosystems, Osilo, Italy.
Abstract
Abstract
—Zinc finger–containing transcription factor GATA-4 and homeodomain Nkx-2.5 govern crucial developmental fates and have been found to promote cardiogenesis in embryonic cells exposed to the differentiating agent DMSO. Nevertheless, intracellular activators of these transcription factors are largely unknown. In this study, pluripotent P19 cells expressed the prodynorphin gene, an opioid gene encoding for the dynorphin family of opioid peptides. P19 cells were also able to synthesize and secrete dynorphin B, a biologically active end product of the prodynorphin gene. DMSO-primed GATA-4 and Nkx-2.5 gene expression was preceded by a marked increase in prodynorphin gene expression and dynorphin B synthesis and secretion. The DMSO effect occurred at the transcriptional level. In the absence of DMSO, dynorphin B triggered GATA-4 and Nkx-2.5 gene expression and led to the appearance of both α-myosin heavy chain and myosin light chain-2V transcripts, two markers of cardiac differentiation. Moreover, dynorphin B–exposed cells were positively stained in the presence of MF 20, a mouse monoclonal antibody raised against the α-myosin heavy chain. Opioid receptor antagonism and inhibition of opioid gene expression by a prodynorphin antisense phosphorothioate oligonucleotide blocked DMSO-induced cardiogenesis, suggesting an autocrine role of an opioid gene in developmental decisions.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献