Abstract
One of the first morphological manifestations of left/right (L/R) asymmetry in mammalian embryos is a pronounced rightward looping of the linear heart tube. The direction of looping is thought to be controlled by signals from an embryonic L/R axial system. We report here that morphological L/R asymmetry in the murine heart first became apparent at the linear tube stage as a leftward displacement of its caudal aspect. Beginning at the same stage, the basic helix-loop-helix (bHLH) factor gene eHand was expressed in a strikingly left-dominant pattern in myocardium, reflecting an intrinsic molecular asymmetry. In hearts of embryos lacking the homeobox gene Nkx2-5, which do not loop, left-sided eHand expression was abolished. However, expression was unaffected in Sc1-/- hearts that loop poorly because of hematopoietic insufficiency, and was right-sided in hearts of inv/inv embryos that display situs inversus. The data predict that eHand expression is enhanced in descendants of the left heart progenitor pool as one response to inductive signaling from the L/R axial system, and that eHand controls intrinsic morphogenetic pathways essential for looping. One aspect of the intrinsic response to L/R information falls under Nkx2-5 homeobox control.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
294 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献