Affiliation:
1. From the Department of Biology, University of Michigan, Ann Arbor, Mich.
Abstract
Abstract
—Insulin-like growth factor–I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation and directed migration. The mitogenic and chemotactic actions of IGF-I are mediated through the IGF-I receptor, but how the activation of the IGF-I receptor leads to these biological responses is poorly understood. In this study, we examined the role of phosphatidylinositol 3-kinase (PI3 kinase) in mediating the mitogenic and chemotactic signals of IGF-I. IGF-I treatment resulted in a significant increase in phosphotyrosine-associated PI3 kinase activity in cultured primary VSMCs. To determine whether insulin receptor substrate (IRS)–1, -2, or both are involved in IGF-I signaling in VSMCs, cell lysates were immunoprecipitated with either an anti-IRS-1 or an anti-IRS-2 antibody, and the associated PI3 kinase activity was determined. IGF-I stimulation resulted in a significant increase in IRS-1– but not IRS-2–associated PI3 kinase activity, suggesting that IGF-I primarily utilizes IRS-1 to transmit its signal in VSMCs. The IGF-I–induced increase in IRS-I–associated PI3 kinase activity was concentration dependent. At the maximum concentration (50 ng/mL), IGF-I induced a 60-fold increase. This activation occurred within 5 minutes and was sustained at high levels for at least 6 hours. IGF-I also caused a concentration-dependent and long-lasting activation of protein kinase B (PKB/Akt). Inhibition of PI3 kinase activation by LY294002 or wortmannin abolished IGF-I–stimulated VSMC proliferation and reduced IGF-I–directed VSMC migration by ≈60%. These results indicate that activation of PI3 kinase is required for both IGF-I–induced VSMC proliferation and migration.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献