Phosphatidylinositol 3-Kinase Is Required for Insulin-Like Growth Factor-I–Induced Vascular Smooth Muscle Cell Proliferation and Migration

Author:

Duan Cunming1,Bauchat Jeanette R.1,Hsieh Tzefu1

Affiliation:

1. From the Department of Biology, University of Michigan, Ann Arbor, Mich.

Abstract

Abstract —Insulin-like growth factor–I (IGF-I) plays an important role in regulating vascular smooth muscle cell (VSMC) proliferation and directed migration. The mitogenic and chemotactic actions of IGF-I are mediated through the IGF-I receptor, but how the activation of the IGF-I receptor leads to these biological responses is poorly understood. In this study, we examined the role of phosphatidylinositol 3-kinase (PI3 kinase) in mediating the mitogenic and chemotactic signals of IGF-I. IGF-I treatment resulted in a significant increase in phosphotyrosine-associated PI3 kinase activity in cultured primary VSMCs. To determine whether insulin receptor substrate (IRS)–1, -2, or both are involved in IGF-I signaling in VSMCs, cell lysates were immunoprecipitated with either an anti-IRS-1 or an anti-IRS-2 antibody, and the associated PI3 kinase activity was determined. IGF-I stimulation resulted in a significant increase in IRS-1– but not IRS-2–associated PI3 kinase activity, suggesting that IGF-I primarily utilizes IRS-1 to transmit its signal in VSMCs. The IGF-I–induced increase in IRS-I–associated PI3 kinase activity was concentration dependent. At the maximum concentration (50 ng/mL), IGF-I induced a 60-fold increase. This activation occurred within 5 minutes and was sustained at high levels for at least 6 hours. IGF-I also caused a concentration-dependent and long-lasting activation of protein kinase B (PKB/Akt). Inhibition of PI3 kinase activation by LY294002 or wortmannin abolished IGF-I–stimulated VSMC proliferation and reduced IGF-I–directed VSMC migration by ≈60%. These results indicate that activation of PI3 kinase is required for both IGF-I–induced VSMC proliferation and migration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3