Integrating Network Pharmacology and Experimental Verification to Explore the Targets and Mechanism for Panax Notoginseng Saponins against Coronary In-stent Restenosis

Author:

Li Yuanchao1,Gao Shenghan2,Zhu Hongying1,Wang Jianbo1

Affiliation:

1. Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China

2. Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210008, China

Abstract

Background: Despite widespread application of drug-eluting stents in coronary intervention, in-stent restenosis (ISR) is still a daunting complication in clinical practice. Panax notoginseng saponins (PNS) are considered to be effective herb compounds for preventing ISR. Objective: This study aimed to elucidate the targets and mechanisms of PNS in ISR prevention using network pharmacology approaches and experimental verification. Methods: Relevant targets of PNS active compounds were collected from the HERB database and PharmMapper. The ISR-related targets were obtained from the GeneCards database and the Comparative Toxicogenomics Database. The GO and KEGG enrichment analysis was performed using R software. The String database and Cytoscape software were employed to build the PPI and compounds-targets-pathways-disease networks. Finally, Molecular docking performed by Autodock Vina and cellular experiments were used to validate network pharmacology results. Results: There were 40 common targets between PNS targets and ISR targets. GO analysis revealed that these targets focused on multiple ISR-related biological processes, including cell proliferation and migration, cell adhesion, inflammatory response, and anti-thrombosis and so on. The KEGG enrichment results suggested that PNS could regulate multiple signaling pathways to inhibit or delay the development and occurrence of ISR. The molecular docking and cellular experiments results verified the network pharmacology results. Conclusion: This study demonstrated that the potential molecular mechanisms of PNS for ISR prevention involved multiple compounds, targets, and pathways. These findings provide a theoretical reference and experimental basis for the clinical application and product development of PNS for the prevention of ISR.

Funder

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3