Transgenic Remodeling of the Regulatory Myosin Light Chains in the Mammalian Heart

Author:

Gulick James1,Hewett Timothy E.1,Klevitsky Raisa1,Buck Scott H.1,Moss Richard L.1,Robbins Jeffrey1

Affiliation:

1. From the Children’s Hospital Research Foundation, Department of Pediatrics, Division of Molecular Cardiovascular Biology (J.G., T.E.H., R.K., J.R.), Cincinnati, Ohio, and the Departments of Physiology (R.L.M.) and Pediatrics (S.H.B.), University of Wisconsin, Madison.

Abstract

Abstract The regulatory myosin light chain (MLC) regulates contraction in smooth muscle. However, its function in striated muscle remains obscure, and the different functional activities of the various isoforms that are expressed in the mammalian heart (ventricle- and atrium-specific MLC2) remain undefined. To begin to explore these issues, we used transgenesis to determine the feasibility of effecting a complete or partial replacement of the cardiac regulatory light chains with the isoform that is normally expressed in fast skeletal muscle fibers (fast muscle–specific MLC2). Multiple lines of transgenic mice were generated that expressed the transgene at varying levels in the heart in a copy number–dependent fashion. There is a major discordance in the manner in which the different cardiac compartments respond to high levels of overexpression of the transgene. In atria, isoform replacement with the skeletal protein was quite efficient, even at low copy number. The ventricle is much more refractory to replacement, and despite high levels of transgenic transcript, protein replacement was incomplete. Replacement could be further increased by breeding the transgenic lines with one another. Despite very high levels of transgenic transcript in these mice, the overall level of the regulatory light chain in both compartments remained essentially constant; only the protein isoform ratios were altered. The partial replacement of the ventricular with the skeletal isoform reduced both left ventricular contractility and relaxation, although the unloaded shortening velocity of isolated ventricular cardiomyocytes was not significantly different.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3