Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles

Author:

Swynghedauw B.

Abstract

The goal of this review is to summarize our knowledge of the plasticity of striated muscles in terms of contractile proteins. During development or when the working conditions are changed, the intrinsic physiological properties of both cardiac and skeletal muscles are modified. These modifications generally adapt the muscle to the new environmental requirements. One of the best examples is compensatory overload obtained in fast skeletal muscle by synergistic tenotomy and in a fast ventricle, such as in rats, by aortic banding. In both cases, after a few weeks the initial speed of shortening for the unloaded muscle drops, whereas the maximum tension developed remains unchanged. Heat measurements show that efficiency (i.e., g work/mol ATP) is improved at the fiber level. The fast skeletal muscle becomes slow, fatigue resistant, and then more adapted to endurance. For the ventricle as a whole to become slow is beneficial only if one contraction is considered; however, it is detrimental in terms of cardiac output and leads finally to failure. This adaptational process is partly explained by quantitative and qualitative changes in contractile proteins. Protein synthesis is rapidly enhanced and muscles hypertrophy, which in turn multiplies the contractile units and for the cardiac cylinder normalizes the wall stress. In the meantime the structure and, for myosin, the biological activity of several contractile proteins are modified. These modifications are very unlikely to be posttranscriptional and are in fact explained by several isoform shifts. In both tissues, for example, the expression of the gene coding for a fast myosin (MHCf in skeletal muscle, alpha-MHC in ventricles) is repressed and that of the gene coding for a slow myosin (beta-MHC in both tissues) is stimulated. This is accompanied by a coordinated increase in synthesis of other contractile proteins and, in skeletal muscle only, by isoform shifts of myosin light chains and of the TM-TN regulatory system. Other changes are less well understood. During development it has recently been discovered that three different MHCs (MHCemb, MHCneo, and MHCf) appear sequentially in fast skeletal muscle, which explains, for example, several contradictions of immunological cross-reactions. Currently, however, the functional significance of this finding is unknown, and the well-known decrease of shortening velocity observed in cardiac and skeletal muscles during fetal life is unexplained in terms of contractile proteins.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3