Stochastic tug-of-war among sarcomeres mediates cardiomyocyte response to environmental stiffness

Author:

Haertter Daniel12345ORCID,Hauke Lara123,Driehorst Til15,Nishi Kengo45ORCID,Zimmermann Wolfram-Hubertus12367,Schmidt Christoph F45ORCID

Affiliation:

1. Institute of Pharmacology and Toxicology, University Medical Center Göttingen

2. DZHK (German Center for Cardiovascular Research), partner site Göttingen

3. CIDAS (Campus Institute Data Science), University of Göttingen

4. Department of Physics and Soft Matter Center, Duke University

5. Third Institute of Physics, Faculty for Physics, University of Göttingen

6. Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen

7. Fraunhofer Institute for Translational Medicine and Pharmacology

Abstract

Cardiac muscle function emerges from the coordinated contraction of sarcomeres in cardiomyocytes. Sarcomere dynamics are usually inferred from whole-cell or myofibril observations, assuming synchronized, uniform behavior. Here, we investigated how different mechanical properties of the cell environment affect contraction at both the sarcomere and cell level. Human induced pluripotent stem cell-derived cardiomyocytes with fluorescently labeled Z-bands were cultured individually on patterned elastic substrates (5 - 85 kPa). Sarcomere dynamics were precisely tracked and analyzed using SarcAsM, a machine learning algorithm we developed. Increasingly stiff substrates inhibited overall cardiomyocyte contraction, but, surprisingly, did not diminish individual sarcomere dynamics. Instead, sarcomeres competed in a tug-of-war with increasing heterogeneity, exhibiting rich dynamic phenomena such as rapid length oscillations and overextensions (popping). Statistical analysis showed that the heterogeneous dynamics were not caused by static structural differences, but were largely stochastic. This stochastic heterogeneity is thus an intrinsic property of cardiac sarcomere dynamics and is likely to be crucial for the adaptation of emergent cardiomyocyte contractility to mechanical constraints from its environment.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3