Electrical Restitution and Spatiotemporal Organization During Ventricular Fibrillation

Author:

Riccio Mark L.1,Koller Marcus L.1,Gilmour Robert F.1

Affiliation:

1. From the Department of Physiology (M.L.R., M.L.K., R.F.G.), Cornell University, Ithaca, NY, and Department of Medicine (M.L.K.), University of Würzburg, Germany

Abstract

Abstract —Despite recent advances in our understanding of the mechanism for ventricular fibrillation (VF), important electrophysiological aspects of the development of VF still are poorly defined. It has been suggested that the onset of VF involves the disintegration of a single spiral wave into many self-perpetuating waves. It has been further suggested that such a process requires that the slope of the electrical restitution relation be ≥1. The same theory anticipates that a single spiral wave will be stable (not disintegrate) if the maximum slope of the restitution relation is <1. We have shown previously that the slope of the restitution relation during rapid pacing and during VF is ≥1 in canine ventricle. We now show that drugs that reduce the slope of the restitution relation (diacetyl monoxime and verapamil) prevent the induction of VF and convert existing VF into a periodic rhythm. In contrast, a drug that does not reduce the slope of the restitution relation (procainamide) does not prevent the induction of VF, nor does it regularize VF. These results indicate that the kinetics of electrical restitution is a key determinant of VF. Moreover, they suggest novel approaches to preventing the induction or maintenance of VF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3