Molecular Time

Author:

Martino Tami A.1,Sole Michael J.1

Affiliation:

1. From the Department of Biomedical Sciences (T.A.M.), Ontario Veterinary College, University of Guelph; Toronto General Hospital (M.J.S.); and University Health Network, Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Ontario, Canada.

Abstract

Abstract: Diurnal rhythms influence cardiovascular physiology such as heart rate and blood pressure and the incidence of adverse cardiac events such as heart attack and stroke. For example, shift workers and patients with sleep disturbances, such as obstructive sleep apnea, have an increased risk of heart attack, stroke, and sudden death. Diurnal variation is also evident at the molecular level, as gene expression in the heart and blood vessels is remarkably different in the day as compared to the night. Much of the evidence presented here indicates that growth and renewal (structural remodeling) are highly dependent on processes that occur during the subjective night. Myocardial metabolism is also dynamic with substrate preference also differing day from night. The risk/benefit ratio of some therapeutic strategies and the appearance of biomarkers also vary across the 24-hour diurnal cycle. Synchrony between external and internal diurnal rhythms and harmony among the molecular rhythms within the cell is essential for normal organ biology. Cell physiology is 4 dimensional; the substrate and enzymatic components of a given metabolic pathway must be present not only in the right compartmental space within the cell but also at the right time. As a corollary, we show disrupting this integral relationship has devastating effects on cardiovascular, renal and possibly other organ systems. Harmony between our biology and our environment is vital to good health.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3