Nidogen-2 is a Novel Endogenous Ligand of LGR4 to Inhibit Vascular Calcification

Author:

Chen Yufei12,Mao Chenfeng13,Gu Rui13,Zhao Rujia4ORCID,Li Weihao5ORCID,Ma Zihan12,Jia Yiting12ORCID,Yu Fang12,Luo Jian6ORCID,Fu Yi12,Sun Jinpeng14,Kong Wei12ORCID

Affiliation:

1. Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China (Y.C., C.M., R.G., Z.M., Y.J., F.Y., Y.F., J.S., W.K.).

2. Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.C., R.G., Z.M., Y.J., F.Y., Y.F., W.K.).

3. Beijing Institute of Biotechnology, China (C.M.).

4. Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China (R.Z., J.S.).

5. Department of Vascular Surgery, Peking University People’s Hospital, Peking University, Beijing, China (W.L.).

6. Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China (J.L.).

Abstract

Background: Vascular calcification is closely related to the all-cause mortality of cardiovascular events. Basement membrane protein nidogen-2 is a key component of the vascular extracellular matrix microenvironment and we recently found it is pivotal for the maintenance of contractile phenotype in vascular smooth muscle cells (VSMCs). However, whether nidogen-2 is involved in VSMCs osteochondrogenic transition and vascular calcification remains unclear. Methods: VSMCs was treated with high-phosphate to study VSMC calcification in vitro. Three different mice models (5/6 nephrectomy-induced chronic renal failure, cholecalciferol-overload, and periadventitially administered with CaCl 2 ) were used to study vascular calcification in vivo. Membrane protein interactome, coimmunoprecipitation, flow cytometric binding assay, surface plasmon resonance, G protein signaling, VSMCs calcium assays were performed to clarify the phenotype and elucidate the molecular mechanisms. Results: Nidogen-2 protein levels were significantly reduced in calcified VSMCs and aortas from mice in different vascular calcification model. Nidogen-2 deficiency exacerbated high-phosphate-induced VSMC calcification, whereas the addition of purified nidogen-2 protein markedly alleviated VSMC calcification in vitro. Nidogen-2 -/- mice exhibited aggravated aorta calcification compared to wild-type (WT) mice in response to 5/6 nephrectomy, cholecalciferol-overload, and CaCl 2 administration. Further unbiased coimmunoprecipitation and interactome analysis of purified nidogen-2 and membrane protein in VSMCs revealed that nidogen-2 directly binds to LGR4 (leucine-rich repeat G-protein-coupled receptor 4) with K D value 26.77 nM. LGR4 deficiency in VSMCs in vitro or in vivo abolished the protective effect of nidogen-2 on vascular calcification. Of interest, nidogen-2 biased activated LGR4-Gαq-PKCα (protein kinase Cα)-AMPKα1 (AMP-activated protein kinase α1) signaling to counteract VSMCs osteogenic transition and mineralization. Conclusions: Nidogen-2 is a novel endogenous ligand of LGR4 that biased activated Gαq- PKCα-AMPKα1 signaling and inhibited vascular calcification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3