Thrombospondin-1 Deficiency Accelerates Atherosclerotic Plaque Maturation in ApoE −/− Mice

Author:

Moura Rute1,Tjwa Marc1,Vandervoort Petra1,Van kerckhoven Soetkin1,Holvoet Paul1,Hoylaerts Marc F.1

Affiliation:

1. From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium.

Abstract

Thrombospondin (TSP)1 is implicated in various inflammatory processes, but its role in atherosclerotic plaque formation and progression is unclear. Therefore, the development of atherosclerosis was compared in ApoE −/− and Tsp1 −/− ApoE −/− mice kept on a normocholesterolemic diet. At 6 months, morphometric analysis of the aortic root of both mouse genotypes showed comparable lesion areas. Even when plaque burden increased ≈5-fold in ApoE −/− and 10-fold in Tsp1 −/− ApoE −/− mice, during the subsequent 3 months, total plaque areas were comparable at 9 months. In contrast, plaque composition differed substantially between genotypes: smooth muscle cell areas, mostly located in the fibrous cap of ApoE −/− plaques, both at 6 and 9 months, were 3-fold smaller in Tsp1 −/− ApoE −/− plaques, which, in addition, were also more fibrotic. Moreover, inflammation by macrophages was twice as high in Tsp1 −/− ApoE −/− plaques. This correlated with a 30-fold elevated incidence of elastic lamina degradation, with matrix metalloproteinase-9 accumulation, underneath plaques and manifestation of ectasia, exclusively in Tsp1 −/− ApoE −/− mice. At 9 months, the necrotic core was 1.4-fold larger and 4-fold higher numbers of undigested disintegrated apoptotic cells were found in Tsp1 −/− ApoE −/− plaques. Phagocytosis of platelets by cultured Tsp1 −/− macrophages revealed the instrumental role of TSP1 in phagocytosis, corroborating the defective intraplaque phagocytosis of apoptotic cells. Hence, the altered smooth muscle cell phenotype in Tsp1 −/− ApoE −/− mice has limited quantitative impact on atherosclerosis, but defective TSP1-mediated phagocytosis enhanced plaque necrotic core formation, accelerating inflammation and macrophage-induced elastin degradation by metalloproteinases, speeding up plaque maturation and vessel wall degeneration.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3