Small Molecule Disruption of Gβγ Signaling Inhibits the Progression of Heart Failure

Author:

Casey Liam M.1,Pistner Andrew R.1,Belmonte Stephen L.1,Migdalovich Dmitriy1,Stolpnik Olga1,Nwakanma Frances E.1,Vorobiof Gabriel1,Dunaevsky Olga1,Matavel Alessandra1,Lopes Coeli M.B.1,Smrcka Alan V.1,Blaxall Burns C.1

Affiliation:

1. From the Aab Cardiovascular Research Institute and Departments of Medicine (L.M.C., A.R.P., S.L.B., D.M., O.S., F.E.N., G.V., O.D., A.M., C.M.B.L., B.C.B.) and Pharmacology and Physiology (A.V.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY.

Abstract

Rationale: Excess signaling through cardiac Gβγ subunits is an important component of heart failure (HF) pathophysiology. They recruit elevated levels of cytosolic G protein–coupled receptor kinase (GRK)2 to agonist-stimulated β-adrenergic receptors (β-ARs) in HF, leading to chronic β-AR desensitization and downregulation; these events are all hallmarks of HF. Previous data suggested that inhibiting Gβγ signaling and its interaction with GRK2 could be of therapeutic value in HF. Objective: We sought to investigate small molecule Gβγ inhibition in HF. Methods and Results: We recently described novel small molecule Gβγ inhibitors that selectively block Gβγ-binding interactions, including M119 and its highly related analog, gallein. These compounds blocked interaction of Gβγ and GRK2 in vitro and in HL60 cells. Here, we show they reduced β-AR–mediated membrane recruitment of GRK2 in isolated adult mouse cardiomyocytes. Furthermore, M119 enhanced both adenylyl cyclase activity and cardiomyocyte contractility in response to β-AR agonist. To evaluate their cardiac-specific effects in vivo, we initially used an acute pharmacological HF model (30 mg/kg per day isoproterenol, 7 days). Concurrent daily injections prevented HF and partially normalized cardiac morphology and GRK2 expression in this acute HF model. To investigate possible efficacy in halting progression of preexisting HF, calsequestrin cardiac transgenic mice (CSQ) with extant HF received daily injections for 28 days. The compound alone halted HF progression and partially normalized heart size, morphology, and cardiac expression of HF marker genes (GRK2, atrial natriuretic factor, and β-myosin heavy chain). Conclusions: These data suggest a promising therapeutic role for small molecule inhibition of pathological Gβγ signaling in the treatment of HF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 117 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3