CXCR4-Mediated Bone Marrow Progenitor Cell Maintenance and Mobilization Are Modulated by c-kit Activity

Author:

Cheng Min1,Zhou Junlan1,Wu Min1,Boriboun Chan1,Thorne Tina1,Liu Ting1,Xiang Zhifu1,Zeng Qiutang1,Tanaka Toshikazu1,Tang Yao Liang1,Kishore Raj1,Tomasson Michael H.1,Miller Richard J.1,Losordo Douglas W.1,Qin Gangjian1

Affiliation:

1. From the Feinberg Cardiovascular Research Institute (M.C., J.Z., M.W., C.B., T. Thorne, T.L., T. Tanaka, R.K., D.W.L., G.Q.) and Department of Molecular Pharmacology and Biological Chemistry (R.J.M.), Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Cardiology, Union Hospital (M.C., Q.Z.), and Institute of Organ Transplantation, Tongji Hospital (M.W.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China;...

Abstract

Rationale: The mobilization of bone marrow (BM) progenitor cells (PCs) is largely governed by interactions between stromal cell–derived factor (SDF)-1 and CXC chemokine receptor (CXCR)4. Ischemic injury disrupts the SDF-1–CXCR4 interaction and releases BM PCs into the peripheral circulation, where the mobilized cells are recruited to the injured tissue and contribute to vessel growth. BM PCs can also be mobilized by the pharmacological CXCR4 antagonist AMD3100, but the other components of the SDF-1–CXCR4 signaling pathway are largely unknown. c-kit, a membrane-bound tyrosine kinase and the receptor for stem cell factor, has also been shown to play a critical role in BM PC mobilization and ischemic tissue repair. Objective: To investigate the functional interaction between SDF-1–CXCR4 signaling and c-kit activity in BM PC mobilization. Methods and Results: AMD3100 administration failed to mobilize BM PCs in mice defective in c-kit kinase activity or in mice transplanted with BM cells that expressed a constitutively active c-kit mutant. Furthermore, BM levels of phosphorylated (phospho)–c-kit declined after AMD3100 administration and after CXCR4 deletion. In cells adhering to culture plates coated with vascular cell adhesion molecule 1, SDF-1 and stem cell factor increased phospho–c-kit levels, and AMD3100 treatment suppressed SDF-1–induced, but not SCF-induced, c-kit phosphorylation. SDF-1–induced c-kit phosphorylation also required the activation of Src nonreceptor tyrosine kinase: pretreatment of cells with a selective Src inhibitor blocked both c-kit phosphorylation and the interaction between c-kit and phospho-Src. Conclusions: These findings indicate that the regulation of BM PC trafficking by SDF-1 and CXCR4 is dependent on Src-mediated c-kit phosphorylation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3