Shear Stress Regulates Endothelial Microparticle Release

Author:

Vion Anne-Clémence1,Ramkhelawon Bhama1,Loyer Xavier1,Chironi Gilles1,Devue Cecile1,Loirand Gervaise1,Tedgui Alain1,Lehoux Stéphanie1,Boulanger Chantal M.1

Affiliation:

1. From the INSERM, U970, Paris Cardiovascular Research Center PARCC, Paris, France (A.-C.V., B.R., X.L., G.C., C.D., A.T., S.L., C.M.B.); Université Paris Descartes, Sorbonne Paris Cité, UMR-S970, Paris, France (A.-C.V., B.R., X.L., G.C., C.D., A.T., C.M.B.); Centre de Médecine Préventive Cardiovasculaire, AP-HP, Hopital Européen Georges Pompidou, Paris, France (G.C.); INSERM UMR 1087, Institut du Thorax, Nantes, France (G.L.); and Lady Davies Institute, McGill University, Montreal, Canada (S.L.).

Abstract

Rationale: Endothelial activation and apoptosis release membrane-shed microparticles (EMP) that emerge as important biological effectors. Objective: Because laminar shear stress (SS) is a major physiological regulator of endothelial survival, we tested the hypothesis that SS regulates EMP release. Methods and Results: EMP levels were quantified by flow cytometry in medium of endothelial cells subjected to low or high SS (2 and 20 dyne/cm 2 ). EMP levels augmented with time in low SS conditions compared with high SS conditions. This effect was sensitive to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Rho kinases inhibitors but unaffected by caspase inhibitors. Low SS-stimulated EMP release was associated with increased endothelial Rho kinases and ERK1/2 activities and cytoskeletal reorganization. Overexpression of constitutively active RhoA stimulated EMP release under high SS. We also examined the effect of nitric oxide (NO) in mediating SS effects. L-NG-nitroarginine methyl ester (L-NAME), but not D-NG-nitroarginine methyl ester, increased high SS-induced EMP levels by 3-fold, whereas the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) decreased it. L-NAME and SNAP did not affect Rho kinases and ERK1/2 activities. Then, we investigated NO effect on membrane remodeling because microparticle release is abolished in ABCA1-deficient cells. ABCA1 expression, which was greater under low SS than under high SS, was augmented by L-NAME under high SS and decreased by SNAP under low SS conditions. Conclusions: Altogether, these results demonstrate that sustained atheroprone low SS stimulates EMP release through activation of Rho kinases and ERK1/2 pathways, whereas atheroprotective high SS limits EMP release in a NO-dependent regulation of ABCA1 expression and of cytoskeletal reorganization. These findings, therefore, identify endothelial SS as a physiological regulator of microparticle release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3