Suppression of Apoptosis by Nitric Oxide via Inhibition of Interleukin-1β–converting Enzyme (ICE)-like and Cysteine Protease Protein (CPP)-32–like Proteases

Author:

Dimmeler Stefanie1,Haendeler Judith1,Nehls Michael1,Zeiher Andreas M.1

Affiliation:

1. From the Molecular Cardiology Group, Department of Internal Medicine IV, University of Frankfurt, Germany

Abstract

Physiological levels of shear stress alter the genetic programm of cultured endothelial cells and are associated with reduced cellular turnover rates and formation of atherosclerotic lesions in vivo. To test the hypothesis that shear stress (15 dynes/cm2) interferes with programmed cell death, apoptosis was induced in human umbilical venous cells (HUVEC) by tumor necrosis factor-α (TNF-α). Apoptosis was quantified by ELISA specific for histone-associated DNA-fragments and confirmed by demonstrating the specific pattern of internucleosomal DNA-fragmentation. TNF-α (300 U/ml) mediated increase of DNA-fragmentation was completely abrogated by shear stress (446 ± 121% versus 57 ± 11%, P <0.05). This anti-apoptotic activity of shear stress decreased after pharmacological inhibition of endogenous nitric oxide (NO)-synthase by NG-monomethyl-l-arginine and was completely reproduced by exogenous NO-donors.The activation of interleukin-1β–converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like cysteine proteases was required to mediate TNF-α–induced apoptosis of HUVEC. Endothelial-derived nitric oxide (NO) as well as exogenous NO donors inhibited TNF-α–induced cysteine protease activation. Inhibition of CPP-32 enzyme activity was due to specific S-nitrosylation of Cys 163, a functionally essential amino acid conserved among ICE/CPP-32–like proteases. Thus, we propose that shear stress-mediated NO formation interferes with cell death signal transduction and may contribute to endothelial cell integrity by inhibition of apoptosis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 776 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3