Silencing Myeloid Netrin-1 Induces Inflammation Resolution and Plaque Regression

Author:

Schlegel Martin12,Sharma Monika1,Brown Emily J.1,Newman Alexandra A.C.1ORCID,Cyr Yannick1,Afonso Milessa Silva1,Corr Emma M.1,Koelwyn Graeme J.1,van Solingen Coen1ORCID,Guzman Jonathan1,Farhat Rubab1,Nikain Cyrus A.1,Shanley Lianne C.1,Peled Daniel1,Schmidt Ann Marie3ORCID,Fisher Edward A.1,Moore Kathryn J.1ORCID

Affiliation:

1. NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine (M. Schlegel, M. Sharma, E.J.B., A.A.C.N., Y.C., M.S.A., E.M.C., G.J.K., C.v.S., J.G., R.F., C.A.N., L.C.S., D.P., E.A.F., K.J.M.).

2. Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Germany (M. Schlegel).

3. Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University (A.M.S.). K.J. Moore, M. Schlegel, M. Sharma, A.M. Schmidt, and E.A. Fisher designed the study and performed data analysis and interpretation. M. Schlegel, M. Sharma, M.S. Afonso, E.J. Brown, E.M. Corr, C. van Solingen, G.J. Koelwyn, A.A.C. Newman, Y. Cyr, R. Farhat, J. Guzman, L.C. Shanley, and D. Peled conducted experiments, acquired data, and performed analyses. E.J. Brown analyzed the RNA-sequencing...

Abstract

Rationale: Therapeutic efforts to decrease atherosclerotic cardiovascular disease risk have focused largely on reducing atherogenic lipoproteins, yet lipid-lowering therapies alone are insufficient to fully regress plaque burden. We postulate that arterial repair requires resolution of a maladaptive immune response and that targeting factors that hinder inflammation resolution will facilitate plaque regression. Objective: The guidance molecule Ntn1 (netrin-1) is secreted by macrophages in atherosclerotic plaques, where it sustains inflammation by enhancing macrophage survival and blocking macrophage emigration. We tested whether silencing Ntn1 in advanced atherosclerosis could resolve arterial inflammation and regress plaques. Methods and Results: To temporally silence Ntn1 in myeloid cells, we generated genetically modified mice in which Ntn1 could be selectively deleted in monocytes and macrophages using a tamoxifen-induced CX3CR1-driven cre recombinase ( Ntn1 fl/fl Cx3cr1 creERT2+ ) and littermate control mice ( Ntn1 fl/fl Cx3cr1 WT ). Mice were fed Western diet in the setting of hepatic PCSK9 (proprotein convertase subtilisin/kexin type 9) overexpression to render them atherosclerotic and then treated with tamoxifen to initiate deletion of myeloid Ntn1 (Mø ΔNtn1 ) or not in controls (Mø WT ). Morphometric analyses performed 4 weeks later showed that myeloid Ntn1 silencing reduced plaque burden in the aorta (−50%) and plaque complexity in the aortic root. Monocyte-macrophage tracing experiments revealed lower monocyte recruitment, macrophage retention, and proliferation in Mø ΔNtn1 compared with Mø WT plaques, indicating a restructuring of monocyte-macrophage dynamics in the artery wall upon Ntn1 silencing. Single-cell RNA sequencing of aortic immune cells before and after Ntn1 silencing revealed upregulation of gene pathways involved in macrophage phagocytosis and migration, including the Ccr7 chemokine receptor signaling pathway required for macrophage emigration from plaques and atherosclerosis regression. Additionally, plaques from Mø ΔNtn1 mice showed hallmarks of inflammation resolution, including higher levels of proresolving macrophages, IL (interleukin)-10, and efferocytosis, as compared to plaques from Mø WT mice. Conclusion: Our data show that targeting Ntn1 in advanced atherosclerosis ameliorates atherosclerotic inflammation and promotes plaque regression.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

American Heart Association

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3