Contribution of Intimal Smooth Muscle Cells to Cholesterol Accumulation and Macrophage-Like Cells in Human Atherosclerosis

Author:

Allahverdian Sima1,Chehroudi Ali Cyrus1,McManus Bruce M.1,Abraham Thomas1,Francis Gordon A.1

Affiliation:

1. From the Departments of Medicine and Pathology and Laboratory Medicine, Centre for Heart Lung Innovation, Institute for Heart + Lung Health, Providence Health Care Research Institute at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada (S.A., A.C.C., B.M.M., G.A.F.), and Department of Research Resources, Penn State Milton S. Hershey Medical Center, Hershey, PA (T.A.).

Abstract

Background— Intimal smooth muscle cells (SMCs) contribute to the foam cell population in arterial plaque, and express lower levels of the cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) in comparison with medial arterial SMCs. The relative contribution of SMCs to the total foam cell population and their expression of ABCA1 in comparison with intimal monocyte-derived macrophages, however, are unknown. Although the expression of macrophage markers by SMCs following lipid loading has been described, the relevance of this phenotypic switch by SMCs in human coronary atherosclerosis has not been determined. Methods and Results— Human coronary artery sections from hearts explanted at the time of transplantation were processed to clearly delineate intracellular and extracellular lipids and allow costaining for cell-specific markers. Costaining for oil red O and the SMC-specific marker SM α-actin of foam cell–rich lesions revealed that 50±7% (average±standard error of the mean, n=14 subjects) of total foam cells were SMC derived. ABCA1 expression by intimal SMCs was significantly reduced between early and advanced atherosclerotic lesions, with no loss in ABCA1 expression by myeloid lineage cells. Costaining with the macrophage marker CD68 and SM α-actin revealed that 40±6% (n=15) of CD68-positive cells originated as SMCs in advanced human coronary atherosclerosis. Conclusions— These findings suggest SMCs contain a much larger burden of the excess cholesterol in human coronary atherosclerosis than previously known, in part, because of their relative inability to release excess cholesterol via ABCA1 in comparison with myeloid lineage cells. Our results also indicate that many cells identified as monocyte-derived macrophages in human atherosclerosis are in fact SMC derived.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3