Nitric oxide regulates renal hemodynamics and urinary sodium excretion in dogs.

Author:

Manning R D1,Hu L1

Affiliation:

1. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson 39216-4505.

Abstract

The goal of this study was to determine whether nitric oxide has a long-term role in the control of renal hemodynamics and the relation between arterial pressure and urinary sodium excretion. Studies were conducted over a 25-day period in seven conscious dogs equipped with indwelling vascular catheters and an electromagnetic flow probe on the iliac artery. Nitric oxide synthesis was inhibited by continuous intravenous infusion of NG-nitro-L-arginine methyl ester at 37.1 nmol/kg per minute, and the effects of low, normal, and high sodium intakes were determined. Significant nitric oxide synthesis inhibition was evidenced by a decrease in the depressor and flow responses to systemic acetylcholine administration. During the normal sodium intake plus nitro-arginine period, arterial pressure increased to hypertensive levels, averaging 120 +/- 4% of control; renal vascular resistance increased to an average of 134 +/- 8% of control; glomerular filtration rate and renal plasma flow decreased to 83 +/- 3% and 81 +/- 3% of control, respectively; and no changes occurred in filtration fraction, plasma renin activity, plasma concentrations of aldosterone and cortisol, urinary sodium excretion, sodium balance, fractional excretion of sodium, urine volume, and volume balance. Arterial pressure increased further to 130 +/- 3% of control during high salt intake, and sodium balance was achieved at each sodium intake despite the increase in arterial pressure because of a hypertensive shift in the relation between urinary sodium excretion and arterial pressure.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of nutritional status and changes in nutrient intake on renal function;Nutritional Management of Renal Disease;2022

2. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension;Physiological Reviews;2019-01-01

3. Nitric oxide reduces paracellular resistance in rat thick ascending limbs by increasing Na+ and Cl− permeabilities;American Journal of Physiology-Renal Physiology;2017-06-01

4. Nitric Oxide Decreases the Permselectivity of the Paracellular Pathway in Thick Ascending Limbs;Hypertension;2015-06

5. Nitric Oxide in the Kidney;Colloquium Series on Integrated Systems Physiology: From Molecule to Function;2015-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3