Large Versus Small Unilamellar Vesicles Mediate Reverse Cholesterol Transport In Vivo Into Two Distinct Hepatic Metabolic Pools

Author:

Rodrigueza Wendi V.1,Mazany Kirstin D.1,Essenburg Arnold D.1,Pape Michael E.1,Rea Thomas J.1,Bisgaier Charles L.1,Williams Kevin Jon1

Affiliation:

1. From the Department of Biochemistry, Medical College of Pennsylvania, Philadelphia, Pa (W.V.R., K.J.W.); and Vascular and Cardiac Diseases, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co, Ann Arbor, Mich (K.D.M., A.D.E., M.E.P., T.J.R., C.L.B.). Dr Williams is now with the Division of Endocrinology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pa.

Abstract

Abstract Phospholipid liposomes are synthetic mediators of “reverse” cholesterol transport from peripheral tissue to liver in vivo and can shrink atherosclerotic lesions in animals. Hepatic disposal of this cholesterol, however, has not been examined. We compared hepatic effects of large (≈120-nm) and small (≈35-nm) unilamellar vesicles (LUVs and SUVs), both of which mediate reverse cholesterol transport in vivo but were previously shown to be targeted to different cell types within the liver. On days 1, 3, and 5, rabbits were intravenously injected with 300 mg phosphatidylcholine (LUVs or SUVs) per kilogram body weight or with the equivalent volume of saline. After each injection, LUV- and SUV-injected animals showed large increases in plasma concentrations of unesterified cholesterol, indicating mobilization of tissue stores. After hepatic uptake of this cholesterol, however, SUV-treated animals developed persistently elevated plasma LDL concentrations, which by day 6 had increased to more than four times the values in saline-treated controls. In contrast, LUV-treated animals showed normal LDL levels. By RNase protection assay, SUVs suppressed hepatic LDL receptor mRNA at day 6 (to 61±4% of control, mean±SEM), whereas LUVs caused a statistically insignificant stimulation. Hepatic HMG-CoA reductase message was also significantly suppressed with SUV, but not LUV treatment, and hepatic 7α-hydroxylase message showed a similar trend. These data on hepatic mRNA levels indicate that SUVs, but not LUVs, substantially perturbed liver cholesterol homeostasis. We conclude that LUVs and SUVs mobilize peripheral tissue cholesterol and deliver it to the liver, but to distinct metabolic pools that exert different regulatory effects. The effects of one of these artificial particles, SUVs, suggest that reverse cholesterol transport may not always be benign. In contrast, LUVs may be a suitable therapeutic agent, because they mobilize peripheral cholesterol to the liver without suppressing hepatic LDL receptor mRNA and without provoking a subsequent rise in plasma LDL levels.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3