Tissue Factor Pathway Inhibitor in Endothelial Cells Colocalizes With Glycolipid Microdomains/Caveolae

Author:

Lupu Cristina1,Goodwin Christopher A.1,Westmuckett Andrew D.1,Emeis Jeff J.1,Scully Michael F.1,Kakkar Vijay V.1,Lupu Florea1

Affiliation:

1. From the Thrombosis Research Institute, London, UK (C.L., C.A.G., A.D.W., M.F.S., V.V.K., F.L.), and the Gaubius TNO Institute of Vascular Research, Leiden, The Netherlands (J.J.E.).

Abstract

Abstract Tissue factor pathway inhibitor (TFPI), the main downregulator of the procoagulant activity of tissue factor•factor VIIa complex, locates in human endothelial cells (EC) in culture as well-defined clusters uniformly distributed both on the cell surface and intracellularly. We here demonstrate by immunofluorescence that TFPI colocalizes in EC with caveolin, urokinase-type plasminogen activator receptor, and glycosphingolipids. The localization of TFPI in caveolae in resting endothelium is proved by double immunogold electron microscopy for TFPI and caveolin. After ultracentrifugation of rat lung or EC homogenates through density gradients of Nycodenz, TFPI was highly enriched at densities of 1.05 to 1.08 g/mL, together with caveolin and alkaline phosphatase. By ELISA, more than half of the cellular TFPI was detected in Triton X-100-insoluble extracts of EC. TFPI incorporates [1- 3 H]ethanolamine and is cleaved from the cell surface by phosphatidylinositol–phospholipase C, indicating a specific glycosylphosphatidylinositol-anchorage mechanism for TFPI in the plasma membrane. Clustering of TFPI and its localization in caveolae are dependent on the presence of cholesterol in the membrane. Agonist-induced stimulation of EC caused marked changes of distribution for both TFPI and caveolin at subcellular level, with subsequent increase of the cell surface–associated inhibitory activity toward tissue factor•factor VIIa. Our findings suggest that, beside their function in transcytosis, potocytosis, cell surface proteolysis, and regulation of signal transduction, caveolae also play a direct role in the regulation of EC anticoagulant properties.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3