Cold Case of Thrombolysis: Cold Recombinant Tissue Plasminogen Activator Confers Enhanced Neuroprotection in Experimental Stroke

Author:

Huang Yuyou1ORCID,Gu Shanshan1,Han Ziping1,Yang Zhenghong1,Zhong Liyuan1,Li Lingzi1ORCID,Wang Rongliang12,Yan Feng12,Luo Yumin123ORCID,Borlongan Cesario4ORCID,Lu Jie13

Affiliation:

1. Department of Radiology and Nuclear Medicine, Institute of Cerebrovascular Diseases Research Xuanwu Hospital of Capital Medical University Beijing China

2. Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases Beijing China

3. Beijing Institute for Brain Disorders Beijing China

4. University of South Florida Tampa FL

Abstract

Background Thrombolysis and endovascular thrombectomy are the primary treatment for ischemic stroke. However, due to the limited time window and the occurrence of adverse effects, only a small number of patients can genuinely benefit from recanalization. Intraarterial injection of rtPA (recombinant tissue plasminogen activator) based on arterial thrombectomy could improve the prognosis of patients with acute ischemic stroke, but it could not reduce the incidence of recanalization‐related adverse effects. Recently, selective brain hypothermia has been shown to offer neuroprotection against stroke. To enhance the recanalization rate of ischemic stroke and reduce the adverse effects such as tiny thrombosis, brain edema, and hemorrhage, we described for the first time a combined approach of hypothermia and thrombolysis via intraarterial hypothermic rtPA. Methods and Results We initially established the optimal regimen of hypothermic rtPA in adult rats subjected to middle cerebral artery occlusion. Subsequently, we explored the mechanism of action mediating hypothermic rtPA by probing reduction of brain tissue temperature, attenuation of blood–brain barrier damage, and sequestration of inflammation coupled with untargeted metabolomics. Hypothermic rtPA improved neurological scores and reduced infarct volume, while limiting hemorrhagic transformation in middle cerebral artery occlusion rats. These therapeutic outcomes of hypothermic rtPA were accompanied by reduced brain temperature, glucose metabolism, and blood–brain barrier damage. A unique metabolomic profile emerged in hypothermic rtPA‐treated middle cerebral artery occlusion rats characterized by downregulated markers for energy metabolism and inflammation. Conclusions The innovative use of hypothermic rtPA enhances their combined, as opposed to stand‐alone, neuroprotective effects, while reducing hemorrhagic transformation in ischemic stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3