Neurovascular Uncoupling Is Linked to Microcirculatory Dysfunction in Regions Outside the Ischemic Core Following Ischemic Stroke

Author:

Staehr Christian12ORCID,Giblin John T.2ORCID,Gutiérrez‐Jiménez Eugenio3,Guldbrandsen Halvor Ø.1ORCID,Tang Jianbo24ORCID,Sandow Shaun L.56ORCID,Boas David A.2ORCID,Matchkov Vladimir V.1ORCID

Affiliation:

1. Department of Biomedicine Aarhus University Aarhus Denmark

2. Neurophotonics Center, Department of Biomedical Engineering Boston University Boston MA USA

3. Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine Aarhus University Aarhus Denmark

4. Department of Biomedical Engineering Southern University of Science and Technology Shenzhen China

5. Biomedical Science, School of Health University of the Sunshine Coast Sippy Downs Australia

6. Centre for Clinical Research, Faculty of Medicine The University of Queensland Brisbane Australia

Abstract

Background Normal brain function depends on the ability of the vasculature to increase blood flow to regions with high metabolic demands. Impaired neurovascular coupling, such as the local hyperemic response to neuronal activity, may contribute to poor neurological outcome after stroke despite successful recanalization, that is, futile recanalization. Methods and Results Mice implanted with chronic cranial windows were trained for awake head‐fixation before experiments. One‐hour occlusion of the anterior middle cerebral artery branch was induced using single‐vessel photothrombosis. Cerebral perfusion and neurovascular coupling were assessed by optical coherence tomography and laser speckle contrast imaging. Capillaries and pericytes were studied in perfusion‐fixed tissue by labeling lectin and platelet‐derived growth factor receptor β. Arterial occlusion induced multiple spreading depolarizations over 1 hour associated with substantially reduced blood flow in the peri‐ischemic cortex. Approximately half of the capillaries in the peri‐ischemic area were no longer perfused at the 3‐ and 24‐hour follow‐up (45% [95% CI, 33%–58%] and 53% [95% CI, 39%–66%] reduction, respectively; P <0.0001), which was associated with contraction of an equivalent proportion of peri‐ischemic capillary pericytes. The capillaries in the peri‐ischemic cortex that remained perfused showed increased point prevalence of dynamic flow stalling (0.5% [95% CI, 0.2%–0.7%] at baseline, 5.1% [95% CI, 3.2%–6.5%] and 3.2% [95% CI, 1.1%–5.3%] at 3‐ and 24‐hour follow‐up, respectively; P =0.001). Whisker stimulation at the 3‐ and 24‐hour follow‐up led to reduced neurovascular coupling responses in the sensory cortex corresponding to the peri‐ischemic region compared with that observed at baseline. Conclusions Arterial occlusion led to contraction of capillary pericytes and capillary flow stalling in the peri‐ischemic cortex. Capillary dysfunction was associated with neurovascular uncoupling. Neurovascular coupling impairment associated with capillary dysfunction may be a mechanism that contributes to futile recanalization. Hence, the results from this study suggest a novel treatment target to improve neurological outcome after stroke.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3