Abnormal neurovascular coupling as a cause of excess cerebral vasodilation in familial migraine

Author:

Staehr Christian1ORCID,Rajanathan Rajkumar1ORCID,Postnov Dmitry D23ORCID,Hangaard Lise1,Bouzinova Elena V1,Lykke-Hartmann Karin145ORCID,Bach Flemming W6ORCID,Sandow Shaun L7ORCID,Aalkjaer Christian13ORCID,Matchkov Vladimir V1ORCID

Affiliation:

1. Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, Aarhus 8000, Denmark

2. Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, USA

3. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark

4. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

5. Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

6. Department of Neurology, Aarhus University Hospital, Aarhus, Denmark

7. Discipline of Biomedical Science, School of Health and Sports Science, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia

Abstract

Abstract Aims Acute migraine attack in familial hemiplegic migraine type 2 (FHM2) patients is characterized by sequential hypo- and hyperperfusion. FHM2 is associated with mutations in the Na, K-ATPase α2 isoform. Heterozygous mice bearing one of these mutations (α2+/G301R mice) were shown to have elevated cerebrovascular tone and, thus, hypoperfusion that might lead to elevated concentrations of local metabolites. We hypothesize that these α2+/G301R mice also have increased cerebrovascular hyperaemic responses to these local metabolites leading to hyperperfusion in the affected part of the brain. Methods and results Neurovascular coupling was compared in α2+/G301R and matching wild-type (WT) mice using Laser Speckle Contrast Imaging. In brain slices, parenchymal arteriole diameter and intracellular calcium changes in neuronal tissue, astrocytic endfeet, and smooth muscle cells in response to neuronal excitation were assessed. Wall tension and smooth muscle membrane potential were measured in isolated middle cerebral arteries. Quantitative polymerase chain reaction, western blot, and immunohistochemistry were used to assess the molecular background underlying the functional changes. Whisker stimulation induced larger increase in blood perfusion, i.e. hyperaemic response, of the somatosensory cortex of α2+/G301R than WT mice. Neuronal excitation was associated with larger parenchymal arteriole dilation in brain slices from α2+/G301R than WT mice. These hyperaemic responses in vivo and ex vivo were inhibited by BaCl2, suggesting involvement of inward-rectifying K+ channels (Kir). Relaxation to elevated bath K+ was larger in arteries from α2+/G301R compared to WT mice. This difference was endothelium-dependent. Endothelial Kir2.1 channel expression was higher in arteries from α2+/G301R mice. No sex difference in functional responses and Kir2.1 expression was found. Conclusion This study suggests that an abnormally high cerebrovascular hyperaemic response in α2+/G301R mice is a result of increased endothelial Kir2.1 channel expression. This may be initiated by vasospasm-induced accumulation of local metabolites and underlie the hyperperfusion seen in FHM2 patients during migraine attack.

Funder

Lundbeck Foundation

Novo Nordisk Foundation

Independent Research Fund Denmark—Medical Sciences

Brain Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3