Gene Transfer of Dominant-Negative Mutants of Extracellular Signal–Regulated Kinase and c-Jun NH2-Terminal Kinase Prevents Neointimal Formation in Balloon-Injured Rat Artery

Author:

Izumi Yasukatsu1,Kim Shokei1,Namba Masashi1,Yasumoto Hideo1,Miyazaki Hitoshi1,Hoshiga Masaaki1,Kaneda Yasufumi1,Morishita Ryuichi1,Zhan Yumei1,Iwao Hiroshi1

Affiliation:

1. From the Department of Pharmacology (Y.I., S.K., M.N., H.Y., Y.Z., H.I.), Osaka City University Medical School, Osaka; the Gene Experiment Center and Center for Tsukuba Advanced Research Alliance (H.M.), University of Tsukuba; First Department of Internal Medicine (M.H.), Osaka Medical College, Osaka; and Institute for Cellular and Molecular Biology (Y.K.) and Department of Geriatric Medicine (R.M.), Osaka University Medical School, Osaka, Japan.

Abstract

Abstract —We previously reported that extracellular signal–regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK), belonging to mitogen-activated protein kinases, are rapidly activated in balloon-injured artery. Therefore, we examined the role of these kinase activations in neointimal formation by using an in vivo gene transfer technique. We made the dominant-negative mutants of ERK (DN-ERK) and JNK (DN-JNK) to specifically inhibit endogenous ERK and JNK activation, respectively. Before balloon injury, these mutants were transfected into rat carotid artery using the hemagglutinating virus of Japan liposome method. In vivo transfection of DN-ERK and DN-JNK significantly suppressed the activation of ERK and JNK, respectively, after balloon injury, confirming successful expression of the transfected genes. Neointimal formation at 14 and 28 days after injury was prevented by gene transfer of DN-ERK or DN-JNK. Furthermore, bromodeoxyuridine labeling index and total cell–counting analysis at 7 days showed that either DN-ERK or DN-JNK remarkably suppressed smooth muscle cell (SMC) proliferation in both the intima and the media after injury. Gene transfer of wild-type ERK (W-ERK) or JNK (W-JNK) significantly enhanced neointimal hyperplasia at 14 days after injury. Furthermore, DN-ERK and DN-JNK significantly suppressed serum-induced SMC proliferation in vitro. We obtained the first evidence that in vivo gene transfer of DN-ERK or DN-JNK prevented neointimal formation in balloon-injured artery by inhibiting SMC proliferation. Thus, ERK and JNK activation triggers SMC proliferation, leading to neointimal formation. These kinases may be the new therapeutic targets for prevention of vascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3