Subarachnoid Injections of Lysed Blood Induce the hsp70 Stress Gene and Produce DNA Fragmentation in Focal Areas of the Rat Brain

Author:

Matz Paul1,Weinstein Philip1,States Bradley1,Honkaniemi Jari1,Sharp Frank R.1

Affiliation:

1. From the Departments of Neurosurgery (P.M., P.W., B.S.) and Neurology (J.H., F.R.S.), University of California at San Francisco, and Veterans Affairs Medical Center, San Francisco, Calif; and Department of Neurology (J.H.), University of Tampere (Finland).

Abstract

Background and Purpose Most experimental studies of subarachnoid hemorrhage have demonstrated little histological evidence of injury. In the present study we examined both the expression of the hsp70 heat-shock gene, a molecular marker of reversible neuronal injury, and DNA fragmentation, a marker of irreversible cell injury and death. Methods Lysed blood, whole blood, oxyhemoglobin, bovine serum albumin, and saline were injected into the cisterna magna of adult rats. The induction of hsp70 mRNA and HSP70 heat-shock protein was assessed with the use of in situ hybridization and immunocytochemistry, respectively. Fragmentation of genomic DNA was studied by DNA nick end-labeling with the use of terminal deoxynucleotidyl transferase and biotinylated dATP. Results Expression of the hsp70 gene was not induced in the brains of rats injected with whole blood, oxyhemoglobin, bovine serum albumin, or saline. Lysed blood injections, however, induced hsp70 mRNA at 6 and 24 hours in the cerebellar hemispheres and in focal regions of the basal forebrain. HSP70 protein was induced by 24 hours and persisted for at least 4 days in the same regions. HSP70 protein was localized to patches of glial cells and occasional neurons in the forebrain. In the cerebellum HSP70 was localized to Bergmann glial cells, granule cells, molecular layer stellate cells, and occasional Purkinje cells. DNA nick end-labeling showed patches of labeled cells in the basal forebrain that occurred in the same regions that hsp70 mRNA was induced. Conclusions The results demonstrate focal stress gene induction and DNA fragmentation after subarachnoid hemorrhage. It is hypothesized that the focal areas of hsp70 induction may reflect ischemic injury due to vasospasm produced by lysed blood and/or injury mediated by direct toxic effects of the lysed blood. The hsp70 induction and DNA nick end-labeling in the same regions suggests that lysed blood produces a spectrum of injury from HSP70 protein-labeled, reversibly injured cells to dead cells with fragmented DNA. Induction of the hsp70 stress gene and DNA nick end-labeling may be useful for evaluating the causes of injury, the spectrum of injury, and potential pharmacological therapies in experimental models of subarachnoid hemorrhage.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3