Differences in ischemia-induced accumulation of amino acids in the cat cortex.

Author:

Shimada N1,Graf R1,Rosner G1,Heiss W D1

Affiliation:

1. Max-Planck-Institut für neurologische Forschung, Köln, F.R.G.

Abstract

It is well established that excitatory amino acid neurotransmitters are extensively liberated during ischemia and that they have neurotoxic properties contributing to neuronal injury. To study changes in the liberation of excitatory and other amino acids during cerebral ischemia, we measured their extracellular concentrations and related them to blood flow levels and electrophysiologic activity (electrocorticogram and auditory evoked potentials) before and for up to 2 hours after multiple cerebral vessel occlusion in 14 anesthetized cats. Blood flow levels between 0 and 43 ml/100 g/min were reached. Concentrations of the excitatory amino acid neurotransmitters increased most (aspartate 10-fold, glutamate 30-fold, and gamma-aminobutyric acid 300-fold compared with control values) below a blood flow threshold of 20 ml/100 g/min. The total power of the electrocorticogram and the amplitude of the auditory evoked potentials were affected below the same blood flow threshold. In contrast, concentrations of the nontransmitter amino acids taurine, alanine, asparagine, serine, and glutamine increased 1.5-5-fold as blood flow decreased, while concentrations of the essential amino acids phenylalanine, valine, leucine, and isoleucine did not change during cerebral ischemia. The great increases in concentrations of the excitatory amino acid neurotransmitters below a blood flow threshold close to that for functional disturbance is in accordance with the role of these amino acids in ischemic cell damage. Their release at blood flow levels compatible with cell survival and the increase in their concentrations with severity and duration of cerebral ischemia imply that excitotoxic antagonists may have potential as therapeutic agents.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3