Blood and Brain Metabolites after Cerebral Ischemia

Author:

Baranovicova Eva1,Kalenska Dagmar2,Kaplan Peter3ORCID,Kovalska Maria4ORCID,Tatarkova Zuzana3ORCID,Lehotsky Jan3

Affiliation:

1. Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia

2. Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia

3. Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia

4. Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia

Abstract

The study of an organism’s response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue—lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)—regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental—including our results—as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.

Funder

Ministry of Education of the Slovak Republic

EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3