Mechanisms of Motor Dysfunction After Transient MCA Occlusion: Persistent Transmission Failure in Cortical Synapses Is a Major Determinant

Author:

Bolay Hayrunnisa1,Dalkara Turgay1

Affiliation:

1. From the Department of Neurology, Faculty of Medicine, and Institute of Neurological Sciences and Psychiatry, Hacettepe University (H.B., T.D.), Ankara, Turkey.

Abstract

Background and Purpose —Failure of prompt motor recovery after spontaneous recirculation or thrombolytic therapy may be due to an unsatisfactory restoration of synaptic activity within cortex and/or blockade of electrical impulses at the severely ischemic subcortical region. Methods —Afferent, efferent, and synaptic activities were focally examined within the rat sensorimotor cortex by recording the somatosensory-evoked potential (SEP) and motor area response evoked by stimulation of premotor afferents (PmEP) intracortically and the motor-evoked potential (MEP) generated by stimulation of the forelimb area from the brain stem. The effect of ischemia on electrical activity in the cortex and on axonal conduction in the subcortical region was studied differentially by proximal or distal occlusion of the MCA. Results —MEP consisted of direct and indirect waves generated by direct activation of pyramidal axons and indirect excitation of pyramidal neurons via cortical synapses, respectively. MEP, PmEP, and SEP disappeared on proximal occlusion. Following reperfusion after 1 to 3 hours of ischemia, the direct wave of MEP readily recovered but the indirect wave showed no improvement, suggesting a restored axonal conduction but impaired cortical synaptic transmission. The synaptic defect, which also caused a poor recovery in PmEP and SEP and on electrocorticogram, was persistent and detected 24 hours after 1 hour of proximal occlusion. Conclusions —Our data suggest that motor dysfunction is caused by loss of cortical excitability and blockade of motor action potentials at the subcortical level during ischemia. After brief transient ischemia, axonal conduction readily recovers; however, a persistent transmission failure at cortical synapses leads to motor dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3