Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats.

Author:

Lin T N1,He Y Y1,Wu G1,Khan M1,Hsu C Y1

Affiliation:

1. Division of Restorative Neurology, Baylor College of Medicine, Houston, TX 77030.

Abstract

Infarct volume is one of the common indexes for assessing the extent of ischemic brain injury following focal cerebral ischemia. Accuracy in the measurement of infarct volume is compounded by postischemic brain edema that may increase brain volume in the infarcted region. We evaluated the effect of brain edema on infarct volume determined by triphenyltetrazolium chloride and hematoxylin and eosin stains in a focal cerebral ischemia model in rats. In a middle cerebral artery occlusion model in rats, infarction is confined to the cerebral cortex. The infarct was delineated by triphenyltetrazolium chloride stain and, in selected samples, by hematoxylin and eosin stain. We determined infarct size at different times after the ischemic insult (6 hours to 7 days) in relation to the evolution of brain edema by the direct measurement of infarct volume. Indirect measurement to reduce the effect of edema on infarct volume was also conducted in the same brain samples. Direct measurement showed that infarct volume fluctuated with the evolution of brain edema (one-way analysis of variance, p < 0.0001). Infarct volume determined by indirect measurement was independent of the extent of brain edema and remained stable from 6 hours to 3 days after ischemia. There was a good correlation between triphenyltetrazolium chloride and hematoxylin and eosin stains in delineating infarct volume with both direct and indirect measurement. Traditional direct measurement of infarct volume is associated with an overestimation of infarct volume during the development of brain edema in the first 3 days after ischemia. This artifact can be reduced with indirect measurement, which is based on noninfarcted cortex volume.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3