TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice—Brief Report

Author:

Baig Ayesha A.1,Haining Elizabeth J.1,Geuss Eva1,Beck Sarah1,Swieringa Frauke1,Wanitchakool Podchanart1,Schuhmann Michael K.1,Stegner David1,Kunzelmann Karl1,Kleinschnitz Christoph1,Heemskerk Johan W.M.1,Braun Attila1,Nieswandt Bernhard1

Affiliation:

1. From the Rudolf Virchow Center for Experimental Biomedicine (A.A.B., E.J.H., D.S., B.N.), Institute of Experimental Biomedicine (A.A.B., E.J.H., S.B., D.S., A.B., B.N.), and Department of Neurology (E.G., M.K.S., C.K.), University Hospital of Würzburg and University of Würzburg, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands (F.S., J.W.M.H.); Department of Physiology, University of Regensburg, Germany (P.W., K.K.);...

Abstract

Objective— It is known that both platelets and coagulation strongly influence infarct progression after ischemic stroke, but the mechanisms and their interplay are unknown. Our aim was to assess the contribution of the procoagulant platelet surface, and thus platelet-driven thrombin generation, to the progression of thromboinflammation in the ischemic brain. Approach and Results— We present the characterization of a novel platelet and megakaryocyte-specific TMEM16F (anoctamin 6) knockout mouse. Reflecting Scott syndrome, platelets from the knockout mouse had a significant reduction in procoagulant characteristics that altered thrombin and fibrin generation kinetics. In addition, knockout mice showed significant defects in hemostasis and arterial thrombus formation. However, infarct volumes in a model of ischemic stroke were comparable with wild-type mice. Conclusions— Platelet TMEM16F activity contributes significantly to hemostasis and thrombosis but not cerebral thromboinflammation. These results highlight another key difference between the roles of platelets and coagulation in these processes.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3