Carboxyl Terminus of ADAMTS13 Directly Inhibits Platelet Aggregation and Ultra Large von Willebrand Factor String Formation Under Flow in a Free-Thiol–Dependent Manner

Author:

Bao Jialing1,Xiao Juan1,Mao Yingying1,Zheng X. Long1

Affiliation:

1. From the Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia (J.B., J.X., Y.M., X.L.Z.); The University of Pennsylvania Perelman School of Medicine, Philadelphia (X.L.Z.); and the Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China (J.X., X.L.Z.).

Abstract

Objective— ADAMTS13 (A Disintegrin And Metalloprotease with Thrombospondin type 1 repeats, 13) cleaves von Willebrand factor (VWF), thereby inhibiting thrombus formation. Proteolytic cleavage relies on the amino-terminal (MDTCS) domains, but the role of the more distal carboxyl-terminal domains of ADAMTS13 is not fully understood. A previous study demonstrated the presence of multiple surface-exposed free sulfhydryls on ADAMTS13 that seemed to interact with those on VWF under shear. Here, we determined the physiological relevance of such an interaction in antithrombotic responses under flow. Approach and Results— A microfluidic assay demonstrated that a carboxyl-terminal fragment of ADAMTS13, comprising either 2 to 8 thrombospondin type 1 (TSP1) repeats and CUB domains (T2C) or 5 to 8 Thrombospondin type 1 (TSP1) repeats and CUB domains (T5C), directly inhibited platelet adhesion/aggregation on a collagen surface under arterial shear. In addition, an intravital microscopic imaging analysis showed that the carboxyl-terminal fragment of ADAMTS13 (T2C or T5C) was capable of inhibiting the formation and elongation of platelet-decorated ultra large (UL) VWF strings and the adhesion of platelets/leukocytes on endothelium in mesenteric venules after oxidative injury. The inhibitory activity of T2C and T5C on platelet aggregation and ULVWF string formation were dependent on the presence of their surface free thiols; pretreatment of T2C and T5C or full-length ADAMTS13 with N-ethylmaleimide that reacts with free sulfhydryls abolished or significantly reduced its antithrombotic activity. Conclusions— Our results demonstrate for the first time that the carboxyl terminus of ADAMTS13 has direct antithrombotic activity in a free-thiol–dependent manner. The free thiols in the carboxyl-terminal domains of ADAMTS13 may also contribute to the overall antithrombotic function of ADAMTS13 under pathophysiological conditions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3