Affiliation:
1. National Medical Research Center for Cardiology named after academician E.I. Chazov
2. National Medical Research Center for Cardiology named after academician E.I. Chazov; State Scientific Center of the Russian Federation – The Institute of Biomedical Problems of the Russian Academy of Sciences
3. National Medical Research Center for Hematology
Abstract
Von Willebrand factor (VWF) is a multimeric plasma glycoprotein present in endothelial cells, megakaryocytes, platelets, and connective tissue. It mediates platelet adhesion in small arteries. VWF also binds and protects coagulation factor VIII from degradation. Moreover, VWF is involved in inflammatory response, linking hemostasis and inflammation. VWF multimers and platelets attached to damaged or activated endothelium mediate leukocyte recruitment, facilitating local inflammatory response. At shear rates above 5000 s–1, VWF molecules are capable of hydrodynamic activation that changes their conformation from globular to fibrillar. Therefore, VWF plays a key role in cellular hemostasis at high shear rates. Acquired and inherited disfunction, defective synthesis or increased proteolysis of VWF multimers lead to bleeding, as in von Willebrand disease or Heyde syndrome. Pathological activation of VWF may lead to the development of thrombotic complications of coronary artery disease. COVID-19, especially severe form, is characterized by prothrombotic shift in pulmonary vascular bed. Following endothelial damage, VWF plasma level rises and ADAMTS-13 activity decreases. In patients with COVID-19, a change in the VWF/ADAMTS-13 ratio is associated with an increase in the risk of thromboembolic complications. Therefore, assessment of hydrodynamic activation of VWF under flow conditions may be valuable in fundamental research and laboratory diagnostics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献