Endothelial Cells Derived From Human iPSCS Increase Capillary Density and Improve Perfusion in a Mouse Model of Peripheral Arterial Disease

Author:

Rufaihah Abdul Jalil1,Huang Ngan F.1,Jamé Sina1,Lee Jerry C.1,Nguyen Ha N.1,Byers Blake1,De Abhijit1,Okogbaa Janet1,Rollins Mark1,Reijo-Pera Renee1,Gambhir Sanjiv S.1,Cooke John P.1

Affiliation:

1. From the Division of Cardiovascular Medicine (R.A., N.F.H., S.J., J.C.L., J.O., J.P.C.), Institute for Stem Cell Biology & Regenerative Medicine, Department of Obstetrics and Gynecology (H.N.N., R.R.-P.), Molecular Imaging Program and Bio-X Program, Department of Radiology (A.D., S.G.), Stanford University School of Medicine, Stanford, CA; Department of Anesthesiology (M.R.), University of California, San Francisco, CA.

Abstract

Objective— Stem cell therapy for angiogenesis and vascular regeneration has been investigated using adult or embryonic stem cells. In the present study, we investigated the potential of endothelial cells (ECs) derived from human induced pluripotent stem cells (hiPSCs) to promote the perfusion of ischemic tissue in a murine model of peripheral arterial disease. Methods and Results— Endothelial differentiation was initiated by culturing hiPSCs for 14 days in differentiation media supplemented with BMP-4 and vascular endothelial growth factor. The hiPSC-ECs exhibited endothelial characteristics by forming capillary-like structures in matrigel and incorporating acetylated-LDL. They stained positively for EC markers such as KDR, CD31, CD144, and eNOS. In vitro exposure of hiPSC-ECs to hypoxia resulted in increased expression of various angiogenic related cytokines and growth factors. hiPSC-ECs were stably transduced with a double fusion construct encoded by the ubiquitin promoter, firefly luciferase for bioluminescence imaging and green fluorescence protein for fluorescent detection. The hiPSC-ECs (5×10 5 ) were delivered by intramuscular injection into the ischemic hindlimb of SCID mice at day 0 and again on day 7 after femoral artery ligation (n=8). Bioluminescence imaging showed that hiPSC-ECs survived in the ischemic limb for at least 2 weeks. In addition, laser Doppler imaging showed that the ratio of blood perfusion was increased by hiPSC-EC treatment by comparison to the saline-treated group (0.58±0.12 versus 0.44±0.04; P =0.005). The total number of capillaries in the ischemic limb of mice receiving hiPSC-EC injections was greater than those in the saline-treated group (1284±155 versus 797±206 capillaries/mm 2 ) ( P <0.002). Conclusion— This study is a first step toward development of a regenerative strategy for peripheral arterial disease based on the use of ECs derived from hiPSCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 241 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3