Improvement of Postnatal Neovascularization by Human Embryonic Stem Cell–Derived Endothelial-Like Cell Transplantation in a Mouse Model of Hindlimb Ischemia

Author:

Cho Seung-Woo1,Moon Sung-Hwan1,Lee Soo-Hong1,Kang Sun-Woong1,Kim Jumi1,Lim Jae Min1,Kim Hyo-Soo1,Kim Byung-Soo1,Chung Hyung- Min1

Affiliation:

1. From the Department of Bioengineering (S.C., B.K.) and Department of Chemical Engineering (S.K., J.M.L.), Hanyang University, Seoul, Korea; Department of Chemical Engineering (S.C.), Massachusetts Institute of Technology, Cambridge, Mass; Stem Cell Research Laboratory (S.M., S.L., J.K., H.C.), CHA Stem Cell Institute & CHA Biotech, Pochon CHA University, Seoul, Korea; and Department of Internal Medicine (H.K.), Seoul National University College of Medicine, Seoul, Korea.

Abstract

Background— We established an efficient preparation method to obtain endothelial-like cells (ECs) from human embryonic stem cells (hESCs) and tested whether these hESC-ECs would show therapeutic potential for treatment of hindlimb ischemia. Methods and Results— ECs differentiated from hESCs were obtained by mechanical isolation and cell sorting for von Willebrand factor. The isolated hESC-ECs maintained endothelial cell–specific characteristics such as endothelial marker expression and capillary formation. One day after surgical induction of hindlimb ischemia in athymic mice, hESC-ECs were injected intramuscularly into ischemic limbs. Four weeks after treatment, hESC-EC treatment significantly increased limb salvage (36%) compared with treatment with medium (0%). In addition, laser Doppler imaging showed that the ratio of blood perfusion (ischemic to normal limb) was increased significantly ( P <0.01) by hESC-EC treatment (0.511±0.167) compared with medium injection (0.073±0.061). Capillary and arteriole densities were 658±190/mm 2 and 30±11/mm 2 in the hESC-EC group, respectively, whereas those in the medium group were 392±118/mm 2 and 16±8/mm 2 , respectively ( P <0.01). Reverse-transcription polymerase chain reaction with human-specific primers revealed mRNA expression of human endothelial markers and human angiogenic factors in ischemic mouse tissues. The transplanted hESC-ECs were localized as capillaries near muscle tissues in ischemic regions or incorporated in the vessels between muscle tissues, as confirmed by human nuclear antigen staining with platelet/endothelial cell adhesion molecule or von Willebrand factor. Conclusions— This study demonstrates that hESC-EC transplantation improves blood perfusion and limb salvage by facilitating postnatal neovascularization in a mouse model of hindlimb ischemia. Thus, hESC-ECs might be useful as an alternative cell source for angiogenic therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3