In Vivo Fluorescence Imaging of Large-Vessel Thrombosis in Mice

Author:

Cooley Brian C.1

Affiliation:

1. From the Medical College of Wisconsin, Milwaukee, WI.

Abstract

Objective— Experimental studies of large-vessel thrombosis have been adapted for applications in mice, but they proffer limited quantifiable information in outcome measures. This study presents a novel approach for evaluating large-vessel thrombogenesis with temporally/spatially quantifiable measures and normalization methods for interanimal comparisons. Methods and Results— Shuttered, beam-expanded lasers provided uniform narrow-wavelength illumination of a ×100 microsurgical field with a large depth of focus. Thrombosis was generated in murine carotid arteries and femoral veins by brief vascular surface electrolytic injury. Thrombus-targeting fluorophores were injected systemically and subsequently localized at the site of thrombus induction. A low-light digital video camera with filter wheel provided target-specific image acquisition over a 60-minute interval. Platelets accumulated with a subsequent fibrin border emerging to stabilize the clot in both arteries and veins. Coagulation enzyme complexes colocalized with fibrin deposition. Large arteries underwent cyclic massive thromboembolization, whereas veins showed gradual shedding of microemboli and clot contraction. Systemic administration of fibrin- and platelet-inhibiting compounds reduced their respective targets but also often inhibited their clotting counterparts (platelets and fibrin, respectively) in both arteries and veins. Conclusion— Intermediate-level magnified image capture represents a novel approach for analysis of fluorescence-based in vivo imaging, with quantitative application to the study of large-vessel thrombosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3