Reduction of photodynamic damage of blood vessels in the protected region by (–)-epigallocatechin gallate

Author:

Chen Tianlong1ORCID,Shen Yi1ORCID,Lin Li1ORCID,Lin Huiyun1ORCID,Song Xuejiao2ORCID,Chen Defu3ORCID,Li Buhong14ORCID

Affiliation:

1. MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, P. R. China

2. Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, P. R. China

3. School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China

4. School of Physics and OptoElectronic Engineering, Hainan University, Haikou 570228, P. R. China

Abstract

Photodynamic therapy (PDT) has been increasingly used in the clinical treatment of neoplastic, inflammatory and infectious skin diseases. However, the generation of reactive oxygen species (ROS) may induce undesired side effects in normal tissue surrounding the treatment lesion, which is a big challenge for the clinical application of PDT. To date, (–)-Epigallocatechin gallate (EGCG) has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage. This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether (Hemoporfin)-mediated PDT. The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be [Formula: see text] M−1S−1 and [Formula: see text] M−1S−1, respectively. The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel, suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG. This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2, and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.

Funder

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3