Syndecan-4 Deficiency Limits Neointimal Formation After Vascular Injury by Regulating Vascular Smooth Muscle Cell Proliferation and Vascular Progenitor Cell Mobilization

Author:

Ikesue Masahiro1,Matsui Yutaka1,Ohta Daichi1,Danzaki Keiko1,Ito Koyu1,Kanayama Masashi1,Kurotaki Daisuke1,Morimoto Junko1,Kojima Tetsuhito1,Tsutsui Hiroyuki1,Uede Toshimitsu1

Affiliation:

1. From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.).

Abstract

Objective— Syndecan-4 (Syn4) is a heparan sulfate proteoglycan and works as a coreceptor for various growth factors. We examined whether Syn4 could be involved in the development of neointimal formation in vivo. Methods and Results— Wild-type (WT) and Syn4-deficient (Syn4 −/− ) mice were subjected to wire-induced femoral artery injury. Syn4 mRNA was upregulated after vascular injury in WT mice. Neointimal formation was attenuated in Syn4 −/− mice, concomitantly with the reduction of Ki67-positive vascular smooth muscle cells (VSMCs). Basic-fibroblast growth factor– or platelet-derived growth factor-BB–induced proliferation, extracellular signal-regulated kinase activation, and expression of cyclin D1 and Bcl-2 were impaired in VSMCs from Syn4 −/− mice. To examine the role of Syn4 in bone marrow (BM)–derived vascular progenitor cells (VPCs) and vascular walls, we generated chimeric mice by replacing the BM cells of WT and Syn4 −/− mice with those of WT or Syn4 −/− mice. Syn4 expressed by both vascular walls and VPCs contributed to the neointimal formation after vascular injury. Although the numbers of VPCs were compatible between WT and Syn4 −/− mice, mobilization of VPCs from BM after vascular injury was defective in Syn4 −/− mice. Conclusion— Syn4 deficiency limits neointimal formation after vascular injury by regulating VSMC proliferation and VPC mobilization. Therefore, Syn4 may be a novel therapeutic target for preventing arterial restenosis after angioplasty.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3