Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase

Author:

Liu Yangyang1,Hu Mengjiao1,Luo Dongjiao1,Yue Ming1,Wang Shuai1,Chen Xiaoyan1,Zhou Yangfan1,Wang Yi1,Cai Yanchun1,Hu Xiaolan1,Ke Yuehai1,Yang Zhongzhou1,Hu Hu1

Affiliation:

1. From the Department of Pathology and Pathophysiology (Y.L., M.H., M.Y., S.W., X.C., Y.Z., Y.W, Y.C., X.H., H.H.) and Program in Molecular Cell Biology (Y.K.), Zhejiang University School of Medicine, Hangzhou, China; Hangzhou Normal University Qianjiang College, China (D.L.); and Ministry of Education Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China (Z.Y.).

Abstract

Objective— Class III phosphoinositide 3-kinase, also known as VPS34 (vacuolar protein sorting 34), is a highly conserved enzyme regulating important cellular functions such as NADPH oxidase (NOX) assembly, membrane trafficking, and autophagy. Although VPS34 is expressed in platelets, its involvement in platelet activation remains unclear. Herein, we investigated the role of VPS34 in platelet activation and thrombus formation using VPS34 knockout mice. Approach and Results— Platelet-specific VPS34-deficient mice were generated and characterized. VPS34 deficiency in platelets did not influence tail bleeding time. In a ferric chloride–induced mesenteric arteriolar thrombosis model, VPS34 −/− mice exhibited a prolonged vessel occlusion time compared with wild-type mice (42.05±4.09 versus 18.30±2.47 minutes). In an in vitro microfluidic whole-blood perfusion assay, thrombus formation on collagen under arterial shear was significantly reduced for VPS34 −/− platelets. VPS34 −/− platelets displayed an impaired aggregation and dense granule secretion in response to low doses of collagen or thrombin. VPS34 deficiency delayed clot retraction but did not influence platelet spreading on fibrinogen. We also demonstrated that VPS34 deficiency altered the basal level of autophagy in resting platelets and hampered NOX assembly and mTOR (mammalian target of rapamycin) signaling during platelet activation. Importantly, we identified the NOX-dependent reactive oxygen species generation as the major downstream effector of VPS34, which in turn can mediate platelet activation. In addition, by using a specific inhibitor 3-methyladenine, VPS34 was found to operate through a similar NOX-dependent mechanism to promote human platelet activation. Conclusions— Platelet VPS34 is critical for thrombosis but dispensable for hemostasis. VPS34 regulates platelet activation by influencing NOX assembly.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3