XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling

Author:

Zeng Lingfang1,Li Yi1,Yang Juanyao1,Wang Gang1,Margariti Andriana1,Xiao Qingzhong1,Zampetaki Anna1,Yin Xiaoke1,Mayr Manuel1,Mori Kazutoshi1,Wang Wen1,Hu Yanhua1,Xu Qingbo1

Affiliation:

1. From the Cardiovascular Division, King’s College London BHF Centre, London, United Kingdom (L.Z., Y.L., J.Y., A.Z., X.Y., M.M., Y.H., Q.X.); Institute of Bioengineering (J.Y., W.W.) and Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry (Q.X.), Queen Mary University of London, London, United Kingdom; Department of Emergency Medicine, The Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China (G.W...

Abstract

Objective— Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box–binding protein 1 (XBP1) was involved in these processes. Approach and Results— In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 expression and splicing in vascular SMCs and that XBP1 deficiency in SMCs significantly abrogated neointimal formation in the injured vessels. In vitro studies indicated that platelet-derived growth factor-BB triggered XBP1 splicing in SMCs via the interaction between platelet-derived growth factor receptor β and the inositol-requiring enzyme 1α. The spliced XBP1 (XBP1s) increased SMC migration via PI3K/Akt activation and proliferation via downregulating calponin h1 (CNN1). XBP1s directed the transcription of mir-1274B that targeted CNN1 mRNA degradation. Proteomic analysis of culture media revealed that XBP1s decreased transforming growth factor (TGF)-β family proteins secretion via transcriptional suppression. TGF-β3 but not TGF-β1 or TGF-β2 attenuated XBP1s-induced CNN1 decrease and SMC proliferation. Conclusions— This study demonstrates for the first time that XBP1 is crucial for SMC proliferation via modulating the platelet-derived growth factor/TGF-β pathways, leading to neointimal formation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3